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Abstract

We present a quantitative analysis of λ-calculus in the de Bruijn notation and combinatory
logic under various combinator bases. Both classes of computational models are shown to
share the fixed subterm property – for an arbitrary fixed term T , asymptotically almost all
terms contain T as a subterm. In consequence, both models exhibit similar quantitative
properties with respect to normalisation and typeability. Specifically, asymptotically
almost no term is either strongly normalising or typeable. Furthermore, asymptotically
almost no normalising term is simultaneously strongly normalising.

In the context of λ-calculus, we investigate the average de Bruijn index weight within
the general Gittenberger-Gołębiewski size notion framework. We show that its mean
value tends to a constant as the term size tends to infinity. Moreover, we focus on the
so-called natural size notion for which we state several quantitative results. For instance,
we identify the corresponding counting sequence of neutral λ-terms with Motzkin trees
giving mutually inverse size-preserving translations. As a result, we obtain an exact-
size sampler for the former based on the exact-size sampler for Motzkin trees of Bacher,
Bodini and Jacquot.

Concerning combinator-specific results, we provide a complete syntactic characterisa-
tion of normalising SK-combinators by means of a constructive hierarchy of unambiguous
regular tree grammars. As an application, we present an algorithmic technique of finding
asymptotically significant fractions of normalising SK-combinators. Utilising our system-
atic approach, we show that the asymptotic density of normalising combinators cannot
be less than 34%. We discuss the limits of our method and, based on super-computer
experimental results, discuss the asymptotic density and average complexity of norm-
alising combinators, arguing that the asymptotic density of normalising combinators is
approximately equal to 85%.

Finally, we discuss the effective generation of random λ-terms and combinators, focus-
ing on the set of closed and typeable λ-terms. We provide effective Boltzmann samplers
for several classes of interesting λ-terms including the restricted class of so-called closed
h-shallow λ-terms, i.e. closed λ-terms in which de Bruijn indices are bounded by h. Com-
bining Boltzmann models and logic programming techniques available in modern Prolog
systems, we give a sampling scheme for closed typeable λ-terms and discuss the intriguing
challenges blocking effective sampling of large closed typeable λ-terms.
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Chapter 1

Introduction

Quantitative investigations in logic where combinatorial aspects and asymptotic behaviour
of large ‘typical’ logical entities are studied, form a prominent branch of modern computer
science. The standard approach to attaching formal meaning to the informal notion of
‘typical’ structure in an infinite denumerable universe Ω is to consider the limit behaviour
of probabilities over sets of structures with bounded size. Quite often, appropriate size
notions are naturally derived from the syntax of the considered universe, such as the
length of strings representing studied structures or the number of nodes in their tree
counterparts. In this setting, the probability pn that a uniformly random structure of
size n admits a fixed property P is well-defined. Considering the limit of probabilities
pn with n tending to infinity leads to the notion of asymptotic density – the central
tool of quantitative investigations in logic. If the considered limit exists, P is said to
have asymptotic density in Ω. Moreover, if its quantity is positive, then P constitutes a
property that asymptotically significant fractions of ‘typical’ structures in Ω possess.

Perhaps the most well-known results of this quantitative flavour in logic are Fagin’s
0–1 laws in finite model theory, stating that for a fixed first-order sentence σ the asymp-
totic fraction of finite relational models satisfying σ exists and is either equal to zero
or one [Fag76]. In the language of graphs, a first-order sentence σ holds for almost all
finite graphs if and only if σ holds for the famous Rado graph which is known to be a
PSPACE-complete problem due to Grandjean [Gra83].

Concerning open problems of quantitative provenance in propositional logic, arguably
the most prominent one is the well-known satisfiability threshold hypothesis for k-SAT
formulae postulating the existence of a phase transition between satisfiability and unsat-
isfiability for formulae with m clauses over n variables as the quotient m/n is varied. The
threshold is proven to exists for 2-SAT or 3-XORSAT instances, though the intriguing
case of 3-SAT remains open (see e.g. [Puy04]).

Over the last two decades a significant effort has been devoted to the problem of
estimating the asymptotic fraction of tautologies in different propositional logics including
classical and intuitionistic ones (see e.g. [Fou+10; MTZ00]). While the implicational
fragments of both the classical and intuitionistic logics are proven to be asymptotically
identical by Fournier et al. [Fou+07], remarkably the full propositional systems escape the
usual 0–1 law; specifically, Genitrini and Kozik show that asymptotically 5/8 of classical
tautologies are also tautologies in intuitionistic logic [GK12].

Connected to propositional logic, random and/or trees over a fixed number of variables
and their corresponding Boolean functions were first studied by Chauvin et al. [Cha+04].
Much attention has been dedicated to the asymptotic density of and/or trees representing
a given Boolean function (see e.g. [Koz08]) or the complexity of typical Boolean functions,
especially with respect to the so-called Shannon effect [GGM14]. We refer the curious
reader to Gardy’s survey on probability distributions on Boolean functions and their
complexity [Gar05].
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More recently, a new active stream of quantitative research in λ-calculus and combin-
atory logic was initiated when Wang explored the uniform random generation of closed
λ-terms up to α-equivalence [Wan05]. In her model, Wang assumed a size notion in
which all constructors (i.e. abstractions, applications and variables) contribute one to
the overall term size. The problem of giving asymptotically accurate approximations on
the number of λ-terms of a given size was left open. Later, David et al. investigated a
similar, canonical model in which variables do not contribute to the term size, showing
that asymptotically almost all λ-terms are strongly normalising [Dav+13]. Contrary to
λ-calculus, in the same paper David et al. proved that asymptotically almost no combin-
atory logic term is strongly normalising, marking a crucial quantitative difference of both
computational models. Although the general counting problem has not been resolved,
Bodini et al. obtained asymptotic approximations for some restricted classes of closed
linear and affine λ-terms [Bod+13].

Later on, different representations of both λ-calculus and combinatory logic were in-
vestigated. Lescanne proposed an alternative representation of λ-terms in the de Bruijn
notation where variables are replaced with natural indices intended to denote the dis-
tance to their binding abstractions [Les13; GL13]. Such a new representation allowed to
utilise techniques of analytic combinatorics and, in consequence, embed the generation of
λ-terms in the general framework of Boltzmann samplers [Les14]. Independently, Tromp
considered a binary encoding of λ-calculus and combinatory logic meant for the con-
struction of compact and efficient self-interpreters for both languages with applications to
Kolmogorov complexity [Tro06]. Quantitative aspects of the binary λ-calculus were later
studied by Grygiel and Lescanne [GL15].

Somewhat contrary to the canonical λ-calculus representation, Bendkowski et al. pro-
posed a so-called natural size notion of λ-terms in the de Bruijn notation, exhibiting an
intriguing quantitative connection between λ-calculus and combinatory logic; assuming
their natural size notion, asymptotically almost no λ-term is strongly normalising, as in
the case of combinatory logic [Ben+16a]. Various size notions based on the de Bruijn
notation, in particular the natural and Tromp’s binary size notions, were later generalised
under a common size model framework by Gittenberger and Gołębiewski who provided
tight lower and upper asymptotic bounds on the number of closed λ-terms [GG16].

In the current dissertation we continue the quantitative investigations in λ-calculus
and combinatory logic. In our endeavour we adopt the methods and techniques of ana-
lytic combinatorics – a profound approach to quantitative investigations regarding large
combinatorial structures, linking the analytic properties of generating functions corres-
ponding to the investigated class of combinatorial structures with their quantitative prop-
erties. Necessary preliminary concepts and notions of analytic combinatorics, λ-calculus
and combinatory logic are presented in Chapter 2.

In Chapter 3 we investigate the quantitative properties of λ-calculus in the de Bruijn
notation within the Gittenberger-Gołębiewski size model framework for which we state
several model-independent results with respect to normalisation and typeability. Specific-
ally, we show that λ-terms in this notation have the fixed subterm property, i.e. for an
arbitrary fixed term T , asymptotically almost all λ-terms contain T as a subterm. In
consequence, λ-terms satisfying various classic properties such as typeability or strong
normalisation are asymptotically negligible in the set of all λ-terms. We prove that the
set of normalising λ-terms cannot have a trivial 0–1 asymptotic density, hence among
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the set of normalising λ-terms asymptotically almost no are at the same time strongly
normalising. We investigate the average value of a de Bruijn index in a random λ-term,
proving that its mean value tends to a constant depending entirely on the assumed size
notion.

Subsequently, we focus on the natural size notion. Somewhat unexpectedly, the count-
ing sequence for λ-terms in the natural size notion corresponds also to two families of
binary trees – so-called black-white trees and zigzag-free ones. We provide a constructive
proof of the former fact by exhibiting appropriate mutually inverse translations. Moreover,
we identify the sequence of Motzkin numbers with the counting sequence for neutral
λ-terms, giving a bijection which, in consequence, results in an exact-size sampler for the
latter based on the exact-size sampler for Motzkin trees of Bacher et al. [BBJ13]. Res-
ults in the natural size notion were obtained in collaboration with Grygiel, Lescanne and
Zaionc [Ben+16a; Ben+16b].

Finally, we investigate the practical aspects of generating large uniformly random
λ-terms, in particular closed and typeable ones. We provide an effective method of
generating so-called closed h-shallow λ-terms (i.e. closed λ-terms with de Bruijn indices
bounded by h) within the framework of Boltzmann samplers and discuss the random
generation of closed typeable λ-terms combining the methods of rejection sampling and
logical programming techniques. Results regarding random generation of closed typeable
λ-terms were obtained in collaboration with Grygiel and Tarau [BGT16; BGT17].

In Chapter 4 we study the combinatorial structure of normalising SK-combinators. We
present an algorithm which, for given n, constructs an unambiguous regular tree grammar
defining the set of SK-combinators normalising in precisely n normal-order reduction
steps. In light of the famous Curry and Feys’s standardisation theorem, our reduction
grammars form a complete syntactic characterisation of normalising SK-combinators. We
present a recursive method of constructing corresponding ordinary generating functions
which we later utilise to investigate the asymptotic density of normalising combinators.
Finally, we discuss the number of productions of generated grammars giving a primitive
recursive upper bound. Results regarding normal-order reduction grammars are published
in [Ben17].

In Chapter 5 we focus on the quantitative properties of combinatory logic. We start
with several basis-independent results exhibiting an intriguing quantitative connection
between combinatory logic and λ-calculus in the de Bruijn notation. Similarly to the case
of λ-terms, we show that combinators exhibit the fixed subterm property. In consequence,
it becomes possible to port normalisation and typeability results of λ-calculus directly to
the universe of combinatory logic.

Next, we investigate the asymptotic density of normalising SK-combinators. We prove
that for each positive n, the set of SK-combinators reducing in n normal-order reduc-
tion steps has positive asymptotic density in the set of all combinators. We present an
algorithmic approach of constructing asymptotically significant fractions of normalising
combinators. As an application of our method, we show that the density of normal-
ising combinators cannot be less than 34%. Finally, we present some super-computer
experimental results, arguing that the density of normalising combinators is close to 85%.
Results regarding combinatory logic were obtained in collaboration with Grygiel and
Zaionc [BGZ15; BGZ17].

In Chapter 6 we conclude the dissertation and discuss remaining open problems.



Chapter 2

Preliminaries

In the following chapter we present the necessary preliminary notions and results con-
cerning analytic combinatorics, λ-calculus and combinatory logic.

We start with the fundamental notion of combinatorial class.

Definition 2.1 (Combinatorial class). Let A be a countable set of combinatorial struc-
tures. Assume that A is equipped with a size notion | · | : A → N assigning each α ∈ A
its size |α| in such a way that for each non-negative integer n there are finitely many
structures of size n in A. Then, A together with | · | form a combinatorial class.

Following standard notational conventions we use capital calligraphic lettersA,B, C, . . .
to denote combinatorial classes. We write An to denote the set of structures in A of size
n and an to denote its cardinality. Finally, we call the sequence (an)n∈N the counting
sequence of A.

Definition 2.2 (Asymptotic density). Let A be a combinatorial class contained in an
infinite class B. Assume that there exists a non-negative integer N such that for each
n ≥ N the number bn of structures in B of size n is positive. Then, the asymptotic density
of A in B is defined as

µ

(
A
B

)
= lim

n→∞

aN+n

bN+n

. (2.1)

For given A and B it might not be a priori clear if A has an asymptotic density in B or
what its precise quantity is. Nonetheless, since aN+n ≤ bN+n the above fraction sequence
has a lower and upper limit; hence, we can consider the lower and upper asymptotic
densities defined as

µ−
(
A
B

)
= lim inf

n→∞

aN+n

bN+n

and µ+

(
A
B

)
= lim sup

n→∞

aN+n

bN+n

(2.2)

even if A has no asymptotic density in B.

It is worth noticing that though it might be tempting to interpret asymptotic density
as an asymptotic probability, it is not countably additive. Each finite subset of an infin-
ite class A has a zero asymptotic density in A; in particular, all singletons {αn}n∈N of
structures in A. However, their countable union forms the entire A which has asymptotic
density one in itself.

Definition 2.3 (Asymptotic equivalence). Two sequences (an)n∈N and (bn)n∈N are said
to be asymptotically equivalent if there exists a non-negative integer N such that

lim
n→∞

aN+n

bN+n

= 1 . (2.3)

In such a case, we write an ∼ bn.

7
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Definition 2.4 (Asymptotically typical properties). Let B be a combinatorial class and P
be a predicate defining a property of structures in B. Let A be a subclass of B consisting
of all structures satisfying P , i.e. α ∈ A ⇐⇒ P (α). If both the counting sequences of A
and B are asymptotically equivalent, then asymptotically almost all structures in B have
property P ; in other words, P is typical. On the other hand, if A has a zero asymptotic
density in B, then asymptotically almost no structures in B have property P ; in other
words, P is asymptotically negligible.

Let us notice that slightly different (though not always equivalent) definitions of
asymptotic density and asymptotic equivalence are used in the literature (cf., e.g. [Dav+13;
BGZ15; GK12]). The fractions (2.1), (2.2) and (2.3) are well defined if and only if the
corresponding denominators are strictly positive. Since we are interested in the quotients
for large sizes, we intend to disregard the initial segment where the denominator might
be equal to zero and focus on the limit of the remainder sequence.

2.1 Analytic combinatorics

In this section we outline the main concepts and techniques of analytic combinatorics used
to investigate properties of large random λ-calculus and combinatory logic terms. We refer
the curious reader to the excellent handbooks [FS09; Wil06] for a detailed exposition.

Let us start with the fundamental notion of generating function.

Definition 2.5 (Generating function). Let A be a combinatorial class. Then, the formal
power series

A(z) =
∑
n≥0

anz
n (2.4)

is the ordinary generating function of A.
Different types of generating functions are studied in the literature, e.g. Dirichlet series,

exponential generating functions or their multivariate variants (see, e.g. [FS09, Chapter
III]). Since we are exclusively interested in ordinary ones, as a convention we omit the
adjective ‘ordinary’ and simply write generating function, instead.

We write A(z) to denote the generating function corresponding to the combinatorial
class A. To denote the coefficient standing by zn in A(z) we use [zn]A(z). Finally, if
[zn]A(z) ≤ [zn]B(z) for each n ≥ 0 (for instance, if A is a subclass of B), we write
A(z) � B(z).

Generating functions, as formal power series, provide a compact representation of
counting sequences and, as such, prove useful in solving linear recurrence equations [Wil06].
From this point of view, the question of their convergence is naturally irrelevant. Nonethe-
less, generating functions representing convergent power series in one complex variable are
of special interest as they coincide with the notion of analytic functions at the complex
plane origin.

Definition 2.6 (Analytic function). A function f defined over a region Ω of the complex
plane is analytic at z0 ∈ Ω if in some open disk centred at z0 and contained in Ω, f is
representable by a convergent power series expansion

f(z) =
∞∑
n=0

an(z − z0)n . (2.5)
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We say that f is analytic in a region Ω if f is analytic in each point z0 ∈ Ω.

In this analytic perspective, various natural operations on functions analytic at the
complex plane origin map to symbolic manipulations on the counting sequences repres-
ented by respective generating functions (see [FS09, Part A, Symbolic Methods]). In
particular, the addition and multiplication of generating functions analytic at the ori-
gin map to the disjoint union and Cartesian product (i.e. the class of ordered pairs of
structures) of corresponding combinatorial classes, respectively:∑

n≥0

anz
n +

∑
n≥0

bnz
n =

∑
n≥0

cnz
n where cn = an + bn , (2.6)

∑
n≥0

anz
n ·
∑
n≥0

bnz
n =

∑
n≥0

cnz
n where cn =

n∑
i=0

aibn−i . (2.7)

Moreover, the interpretation of generating functions as functions analytic at the origin
allows us to relate their analytic properties with the quantitative properties of studied
structures; for instance, access the asymptotic form of the corresponding counting se-
quences using the methods of singularity analysis initiated by Flajolet and Odlyzko [FO90].

Theorem 2.7 ([Wil06, Theorem 2.4.1]). Let A(z) be analytic at the origin. Then, either:

(i) A(z) converges for each value of z, or

(ii) there exists a positive real number R such that

• A(z) converges for all |z| < R, and

• A(z) diverges for all |z| > R.

In the latter case, the number R is referred to as the convergence radius of A(z).

Generating functions representing converging power series are analytic in the interior
of their convergence disks. Furthermore, their convergence radii convey the exponential
factors in the growth rate of corresponding counting sequences.

Theorem 2.8 (Exponential growth formula [FS09, Theorem IV.7]). If A(z) is analytic
at the origin and R is the modulus of a singularity nearest to the origin in the sense that

R = sup{r ≥ 0 : A(z) is analytic in |z| < r} , (2.8)

then the coefficient an = [zn]A(z) satisfies

an = R−nθ(n) with lim sup |θ(n)|
1
n = 1 . (2.9)

Definition 2.9 (Complex plane region). A set Ω is called a region if it is a non-empty,
open and connected subset of the complex plane.

Definition 2.10 (Analytic continuation). Let f be an analytic function in a region Ω. If
there exists an analytic function g in a region Ω? such Ω ∩ Ω? 6= ∅ and f(z) = g(z) in
Ω ∩ Ω?, then g is an analytic continuation of f to Ω?.
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Definition 2.11 (Singularity). Let Ω be a region of the complex plane containing z0 and
f be an analytic function in the region Ω\{z0}. If f(z) has an analytic continuation to Ω,
then z0 is said to be a removable singularity of f . Otherwise, if f cannot be analytically
continued to a larger region containing z0, then z0 is said to be a singularity of f .

Theorem 2.12 (Boundary singularities [FS09, Theorem IV.5]). Let A(z) be a function
analytic at the origin, whose expansion has a finite radius of convergence. Then necessarily
A(z) has a singularity on the boundary of its disk of convergence.

In other words, generating functions analytic at the origin cease to converge on the
boundaries of their disks of convergence due to the existence of so-called dominant singu-
larities. Finding their location and type determines the process of singularity analysis.

Theorem 2.13 (Pringsheim [FS09, Theorem IV.6]). If A(z) is representable at the origin
by a series expansion that has non-negative coefficients and radius of convergence R, then
the point z = R is a singularity of A(z).

In our case, the investigated generating functions are algebraic, i.e. are roots of poly-
nomial equations. It is a well known fact that

√
z cannot be unambiguously defined as

an analytic function in a neighbourhood of z = 0; hence, when looking for the radius
of convergence of A(z) we are primarily interested in roots of radicands involved in the
closed-form expression defining A(z).

Proposition 2.14 (Rescaling rule). Let A(z) be analytic at the origin. Then,

[zn]A(z) = ρ−n[zn]A(ρz) . (2.10)

After a proper rescaling, we can focus on the type of singularities of A(z) on the unit
circle. The following analytic tools allow us to determine the sub-exponential factors in
the growth rate of the corresponding counting sequence.

Theorem 2.15 (Standard function scale [FS09, Theorem VI.1]). Let α ∈ C\Z≤0. Then,
f(z) = (1− z)−α admits for large n a complete asymptotic expansion in form of

[zn]f(z) =
nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O

(
1

n3

))
(2.11)

where Γ: C \ Z≤0 → C is the Euler Gamma function defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx . (2.12)

Theorem 2.16 (Newton, Puiseux [FS09, Theorem VII.7]). Let f(z) be a branch of an
algebraic function P (z, f(z)) = 0. Then in a circular neighbourhood of a singularity ρ slit
along a ray emanating from ρ, f(z) admits a fractional Newton-Puiseux series expansion
that is locally convergent and of the form

f(z) =
∑
k≥k0

ck(z − ρ)
k/κ , (2.13)

where k0 ∈ Z and κ ≥ 1.
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Theorem 2.17 (Algebraic singularity analysis [FS09, Theorem VII.8]). Suppose that
α ∈ C \ Z≤0. Let f(z) = (1− z/ρ)−αg(z) + h(z) be an algebraic function, analytic at
the origin, which has a unique dominant singularity z = ρ. Moreover, assume that g(z)
and h(z) are analytic in a larger disk |z| < ρ + η for some η > 0. Then, the coefficients
[zn]f(z) satisfy the following asymptotic approximation

[zn]f(z) ∼ ρ−n
Cnα−1

Γ(α)
(2.14)

where the constant C is equal to g(ρ), i.e. the coefficient standing by (1− z/ρ)−α in the
Newton-Puiseux expansion of f(z).

In order to analyse the limit mean value of a random variable Xn corresponding
to a combinatorial parameter of random λ-terms, we utilise the moment techniques of
multivariate generating functions (see e.g. [FS09, Chapter 3]). In particular, we use the
following derivation and integration schemes:

u
∂

∂u
A(z, u) =

∑
n,k≥0

kan,kz
nuk , (2.15)∫ u

0

dt

t
A(z, t) =

∑
n,k≥0

1

k
an,kz

nuk (2.16)

which enable the elegant expression of the mean value E(Xn) associated with the invest-
igated multivariate generating function A(z, u).

2.1.1 Technical lemmas

In the course of using symbolic methods we often obtain an expression A(z) which, as
such, is not defined at the origin. In consequence, we cannot carry out the algebraic sin-
gularity analysis of A(z) directly; instead, we have to consider its analytic continuation
including the complex plane origin. To determine whether A(z) has an analytic continu-
ation including the origin (i.e. whether the singularity at the origin is removable) we use
the following classic result.

Theorem 2.18 (Riemann, see e.g. [Kra99]). Let f be analytic on the punctured disk
Ω \ {z0} of the complex plane. Then, f has an analytic continuation on Ω if and only if

lim
z→z0

(z − z0)f(z) = 0 . (2.17)

As an immediate consequence, we obtain the following technical lemma.

Lemma 2.19. Let f be analytic on the punctured disk Ω \ {z0}. Suppose that f has
an analytic continuation on Ω. Then for each n ≥ 2, the function f(z)n has an analytic
continuation on Ω.

Proof. Straightforward induction.

In order to simplify the reasoning about the type and location of singularities of gen-
erating functions given without explicit closed-form expressions, we utilise the following
technical lemma guaranteeing certain natural closure properties of analytic functions with
a single square-root type dominating singularity.
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Lemma 2.20. Let Ω be the open disk |z| < ρ + η for some 0 < ρ < 1 and η > 0. Let
F denote the set of functions f : (0, ρ)→ C in form of f(z) =

√
1− z/ρP (z) + Q(z) for

arbitrary P (z) and Q(z) analytic in Ω \ {0}. Then, F with natural function addition and
multiplication forms a commutative ring.

Proof. Note that it suffices to show that F is closed under addition and multiplication,
as the commutative ring laws are certainly preserved. Let (U,+,×) be the commutative
ring of functions analytic in Ω \ {0}. Consider arbitrary f, g ∈ F given by f(z) =√

1− z/ρPf (z) +Qf (z) and g(z) =
√

1− z/ρPg(z) +Qg(z).
Let us start with f(z) + g(z). Note that

f(z) + g(z) =
√

1− z/ρ
(
Pf (z) + Pg(z)

)
+Qf (z) +Qg(z) . (2.18)

Clearly, f(z) + g(z) =
√

1− z/ρ P̃ (z) + Q̃(z) where both P̃ (z) ∈ U and Q̃(z) ∈ U .
Hence, f(z) + g(z) ∈ F .

Now, let us consider f(z) · g(z). By rewriting, we obtain

f(z) · g(z) =
√

1− z/ρ
(
Pg(z)Qf (z) + Pf (z)Qg(z)

)
(2.19)

+(1− z/ρ)Pf (z)Pg(z) +Qf (z)Qg(z) .

Clearly, f(z) · g(z) ∈ F .

2.1.2 Boltzmann samplers

In their seminal paper, Duchon et al. propose a universal framework meant for uniform
random generation of large combinatorial structures [Duc+04]. The central idea in their
approach is to embed the generation scheme in the theory of analytic combinatorics and
therefore, obtain a recursive sampling template for a wide range of existing combinatorial
classes. For our purposes, we are primarily interested in samplers for so-called unlabelled
algebraic combinatorial classes which design we briefly excerpt in this subsection.

Suppose we have a combinatorial class A for which we intend to design a sampler,
i.e. an algorithm which, for a given non-negative integer n, constructs a uniformly random
structure α ∈ An. Duchon et al. propose the following approach.

Relax the deterministic outcome size restriction and parametrise the sampler with
an additional real parameter x in the open interval (0, ρ) where ρ is the modulus of a
dominating singularity of A(z). Let us impose a probability space on A such that Px(α),
i.e. the intended probability that α ∈ A is the sampler’s outcome, is equal to

Px(α) =
x|α|

A(x)
. (2.20)

Certainly, any two structures of the same size are given the same probability. Now, let
N be the random variable marking the size of the sampler’s outcome. Note that the
probability Px(N = n) that the sampler returns a structure of size n is given by

Px(N = n) =
anx

n

A(x)
. (2.21)
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This is indeed a proper probability as∑
n≥0

Px(N = n) =
1

A(x)

∑
n≥0

anx
n = 1 . (2.22)

It is easy to verify that the expected outcome size Ex(N) and its standard deviation
σx(N) are given by the following formulas:

Ex(N) = x
A′(x)

A(x)
and σx(N) =

√
x2A′′(x) + xA′(x)

A(x)
−
(
x
A′(x)

A(x)

)2

. (2.23)

Hence, in the Boltzmann model we do not control the exact size of the generated sample,
though we can calibrate its expected size and standard deviation by choosing a suitable
parameter x.

Let A be a combinatorial class for which we intend to design a Boltzmann sampler
Γx(A). The process of constructing Γx(A) follows the recursive specification of A.

Suppose that A = B+C. Let α ∈ A. Since both B and C are disjoint, the probabilities
PΓ,x(α ∈ B) that α ∈ B and PΓ,x(α ∈ C) that α ∈ C are equal to

PΓ,x(α ∈ B) =
B(x)

A(x)
and PΓ,x(α ∈ C) =

C(x)

A(x)
. (2.24)

And so, in order to sample a structure from A we have to make a probabilistic decision
whether to continue with sampling a structure from B or C. To do so, we draw uniformly at
random a real in the closed interval [0, 1] and compare it with the branching probabilities
B(x)/A(x) and C(x)/A(x). Subsequently, we continue the sampling by calling one of the
corresponding samplers Γx(B) or Γx(C).

Now, suppose that A = B × C. Let α = (β, γ) ∈ A. Note that

PΓ,x(α ∈ A) =
x|α|

A(x)
=

x|β|+|γ|

B(x)C(x)
= PΓ,x(β ∈ B) · PΓ,x(γ ∈ C) . (2.25)

And so, in order to sample a structure from A we have to independently sample two
structures, β ∈ B and γ ∈ C, which we then assemble into a pair (β, γ).

The recursion stops at the level of singleton classes. In such a case, we simply return
the single structure in our class, since

PΓ,x(α ∈ A) =
x|α|

A(x)
=
x|α|

x|α|
= 1 . (2.26)

Once the control parameter x is established, it becomes possible to compile the
Boltzmann sampler given its combinatorial specification and the numerical values of in-
volved generating functions at x. In consequence, we obtain an efficient approximate-size
sampler.

Theorem 2.21 (Duchon, Flajolet, Louchard and Schaeffer [Duc+04]). Let A be a com-
binatorial class specified (in a possibly recursive way) from finite sets by means of disjoint
unions and Cartesian products. Assume as given an oracle that provides the finite collec-
tion of exact values at a coherent value x ∈ (0, ρ) of the generating functions intervening in
a specification of A. Then, the Boltzmann generator Γx(A) performs O(n) real-arithmetic
operations where n is the size of its output structure.



14 CHAPTER 2. PRELIMINARIES

2.2 Lambda calculus

In this section we excerpt the key notions of λ-calculus used throughout the dissertation.
We refer the curious reader to the classic handbook [Bar84] for a detailed exposition.

Definition 2.22 (λ-terms). Let V be an infinite, denumerable set of variables. Then,
the set of λ-terms is defined inductively as follows:

(i) Each variable x ∈ V is a λ-term;

(ii) If N and M are λ-terms, then (NM) is a λ-term;

(iii) If N is a λ-term and x is a variable, then (λx.N) is a λ-term.

Lambda terms in form of (NM) are called applications. Terms in form of (λx.N) are
referred to as abstractions.

Following standard notational conventions we omit outermost parentheses and drop
parentheses from left-associated λ-terms. For instance, (λx.λy.((xy)z)) is equivalent to
λxλy.xyz. Moreover, as in the example, whenever there is a sequence of consecutive
abstractions, we replace it with a single ‘bulk’ abstraction. Hence, λxλy.xyz is simply
written as λxy.xyz. We use lower case letters x, y, z, . . . to denote variables. To denote
arbitrary λ-terms, we use capital letters N,M,P, . . ..

Definition 2.23 (λ-trees). Let N be a λ-term. Then, the λ-tree of N is defined induct-
ively as follows:

(i) The λ-tree of a variable x is a single node labelled ‘x’;

(ii) If N = MP , then the λ-tree of N has a binary root with two subtrees – the λ-tree
of M on the left-hand side and the λ-tree of P on the right-hand side;

(iii) If N = λx.M , then the λ-tree of N has a unary root followed by the λ-tree of M .
The root node in the λ-tree of N is labelled ‘λx’.

As an example, consider the following λ-tree of T = λxy.x(zx):

λy
λx

x

z x

Figure 2.1: Tree-like representation of T .

Henceforth we equate λ-terms with their λ-trees and use both representation inter-
changeably. This slightly abusive convention allows us to conveniently express certain
attributes of λ-terms using common combinatorial notions from graph theory.

Definition 2.24 (Free variables). Let N be a λ-term. Then, the set FV(N) of free
variables in N is defined inductively as follows:
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(i) FV(x) = {x};

(ii) FV(NM) = FV(N) ∪ FV(M);

(iii) FV(λx.N) = FV(N) \ {x}.

In the context of λ-trees, a variable x is bound in N if on its path to the root there
exists an abstraction labelled λx. In such a case the closest, in terms of path distance,
abstraction λx on the path to the root is said to be the binder of x. Otherwise, if
the variable x is not bound in N , then x is free in N . If all variables in N are bound
(equivalently FV(N) = ∅), then N is said to be closed. Otherwise, if some variable occurs
freely in N , then N is said to be open.

From abstract functional calculus point of view, some terms in λ-calculus become in-
trinsically equivalent. Consider λx.x and λy.y. Both λ-terms are intended to represent
the same syntactic anonymous identity function; the particular argument name is natur-
ally irrelevant. Hence, we wish to identify λ-terms that result from a syntactic change of
bound variables. Formally, the λ-term derived by changing the bound variable name x to
y in λx.N is equal to λy.(N [x/y]) where N [x/y] denotes the result of substituting y for all
free occurrences of x in N . This leads us to the following classic notion of α-conversion.

Definition 2.25 (α-conversion). Let N,M be two λ-terms. Then, N and M are said to
be α-convertible if M is obtainable from N by a series of bound variables changes.

As an example, consider the following two α-convertible λ-terms:

λy
λw

w

z w

(a) T1 = λwy.w(zw)

λx

λy

y

z y

(b) T2 = λyx.y(zy)

Figure 2.2: Two α-convertible λ-terms T1 and T2.

Such a conversion induces an equivalence relation on the set of λ-terms; inhabitants
of each α-equivalence class are λ-terms identical up to bound variable renaming.

Equipped with α-conversion, we are now allowed to use the following convenient vari-
able name convention due to Barendregt [Bar84]. If N,M,P,Q, . . . occur in some context,
then we assume that all their bound variable names are unique and different from the
free variables in N,M,P,Q, . . .. This assumption allows us to express the fundamental
notions of substitution and β-reduction in λ-calculus as follows.

Definition 2.26 (Substitution). Let N,M be two λ-terms. Then, the substitution of M
for x in N , denoted N [x := M ], is defined inductively as follows:

(i) x[x := M ] = M ;
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(ii) y[x := M ] = y;

(iii) (NP )[x := M ] = (N [x := M ])(P [x := M ]);

(iv) (λy.N)[x := M ] = λy.(N [x := M ]).

Note that with our variable name convention, in rule (iv) we are safe to substitute M
for x in N without the unintended side-effect of capturing the free occurrences of y in M
under the scope of the binding abstraction.

Definition 2.27 (β-reduction). The β-reduction relation →β is the least relation on
λ-terms such that:

(i) (λx.N)M →β N [x := M ];

(ii) If N →β M , then for each variable x, λx.N →β λx.M ;

(iii) If N →β M , then for each P both PN →β TM and NP →β MP .

Terms in form of (λx.N)M are called redexes. If N does not contain any redex as subterm,
then N is said to be in β-normal form (or simply normal form). If there exists a finite
sequence N1, N2, . . . , Nm such that N = N1, consecutive λ-terms form a β-reduction
sequence, i.e. Ni →β Ni+1, and Nm is in normal form, then N is (weakly) normalising. If
all β-reduction sequences starting with N are finite, then N is strongly normalising.

For convenience, we use→∗β to denote the transitive reflexive closure of→β. To denote
the transitive closure of →β we write →+

β .

Example 2.28. Let ω = λx.xx. Note that Ω = ωω is not normalising as we have

Ω = (λx.xx)(λx.xx)→β (xx)[x := λx.xx] = (λx.xx)(λx.xx) = Ω . (2.27)

Moreover, any λ-term N containing Ω as a subterm cannot be strongly normalising;
rules (ii) and (iii) in the definition of β-reduction imply that we can form a β-reduction
sequence proceeding with the reduction of Ω ad infinitum.

However, if N contains Ω as a subterm, then N might still be normalising. Consider
the λ-term N = (λxy.y)Ω. Note that we have the following two β-reduction sequences
for N :

N →β (λy.y)[x := Ω] = λy.y; (2.28)
N →β (λxy.y) ((zz)[z := ω]) = (λxy.y)Ω→β · · · (2.29)

Here, the former one is finite, whereas the latter one is infinite as it tries to reduce Ω first
over applying the head abstraction (λxy.y) to Ω.

Term rewriting by means of β-reduction constitutes the computational foundation
of λ-calculus – terms represent abstract computations whereas the (potentially infinite)
iterative process of β-reduction forms the mechanism of their execution.
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Theorem 2.29 (Church and Rosser [CR36]). The set of λ-terms is confluent under
β-reduction, i.e. if N →∗β M and N →∗β P , then there exists a λ-term Q such that
both M →∗β Q and P →∗β Q. Pictorially:

N

M P

Q

β

∗
β

∗

β

∗
β

∗

In consequence, each normalising λ-term has a unique, modulo α-conversion, normal form.

Finding the normal form of a normalising λ-term poses a considerable difficulty as some
reduction strategies fail to find normal forms despite their existence (see Example 2.28).
Appreciably, there exists a so-called standard reduction strategy which application is
guaranteed to find normal forms of normalising λ-terms.

Theorem 2.30 (Curry and Feys [CF58]). Let N be a normalising λ-term. Then, the
iterated process of applying β-reduction to the leftmost-outermost redex in N leads to
the normal form of N .

The computational expressiveness of λ-calculus originates from Kleene’s effective ex-
pression of total Herbrand-Gödel recursive functions by means of weakly normalising
λ-terms [Kle36]. In light of the famous Church-Turing thesis, it is therefore possible to
represent all computable functions within λ-calculus, setting it as a universal theory of
computations.

Theorem 2.31 (Church [Chu36]). The set of normalising λ-terms is undecidable.

Similarly to Kleene’s original construction, it is possible to express total Herbrand-
Gödel recursive functions by means of strongly normalising λ-terms (see e.g. [Bar84,
Chapter 9] or [Urz03]). In consequence, we have the following classic result.

Theorem 2.32. The set of strongly normalising λ-terms is undecidable.

2.2.1 Simply-typed theory

A prominent part of λ-calculus is its simply-typed variant. Here, we outline some of its
basic notions. We refer the curious reader to the excellent handbooks [Hin96; SU06] for
a thorough exposition.

Definition 2.33 (Types). LetX be an infinite, denumerable set of type variables, distinct
from the set of term variables. Then, the set of types is defined inductively as follows:

(i) Each type variable a ∈ X is a type;

(ii) If σ and τ are types, then (σ → τ) is a type.
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Types in form of (σ → τ) are called arrow types.
Following standard notational conventions we omit outermost parentheses and drop

parentheses from right-associated types, e.g. σ → τ → ρ is equivalent to (σ → (τ → ρ)).
We use lower case letters a, b, c, . . . to denote type variables. To denote arbitrary types,
we use lower case Greek letters σ, τ, ρ, . . ..

Definition 2.34 (Typing context). A typing context Γ is a finite set of typing assign-
ments, i.e. pairs in form of x : σ (read x is of type σ), such that no term variable x is
subject to more than one type assignment.

Definition 2.35 (Typing rules). Simply-typed λ-calculus is equipped with the following
typing rules:

x : σ ∈ Γ
Γ ` x : σ

(2.30)

Γ ` N : σ → τ Γ `M : σ
Γ ` NM : τ

(2.31)

Γ, x : σ ` N : τ

Γ ` λx.N : σ → τ
(2.32)

Figure 2.3: Typing rules for simply-typed λ-calculus.

In words,

(i) If x : σ is in context Γ, then we can infer that x is of type σ in the context Γ;

(ii) If N is of type σ → τ in the context Γ whereas in the same context M is of type σ,
then the result of applying N to M is of type τ ;

(iii) If N is of type τ in a context Γ containing the type assignment x : σ, then λx.N is
of type σ → τ in the context Γ \ {x : σ}.

Definition 2.36 (Typeable λ-terms). Let N be a λ-term. Then, N is (simply) typeable
if there exists a type σ such that ∅ ` N : σ. To denote the fact that N is of type σ in an
empty context we write N : σ.

Example 2.37. Let I = λx.x. Note that I : σ → σ for an arbitrary type σ. Certainly,
using rule (2.30) we can infer that {x : σ} ` x : σ. As we now abstract the variable x,
rule (2.32) asserts that λx.x : σ → σ. Intuitively, λx.x represents an anonymous identity
function which maps arguments of type σ to results of identical type σ.

Note however that not all λ-terms are typeable. Consider ω = λx.xx. Suppose to the
contrary that ω is typeable, i.e. ω : σ → τ (recall that abstractions can be assigned only
arrow types). Hence, {x : σ} ` (xx) : τ . However, since (xx) is an application, we know
that x is of some type ρ → τ in the context {x : σ}. And so σ = (ρ → τ). Moreover,
at the same time ρ = σ as x is applied to itself in (xx). In consequence, σ = (σ → τ)
yielding an infinite type σ – a contradiction. Thus, ω is not typeable.

From a programming point of view, simple types introduce an important safety layer
in λ-calculus as they prohibit the construction of non-terminating computations.
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Theorem 2.38 (Tait, see e.g. [SU06]). Let N be a typeable λ-term. Then, N is strongly
normalising.

Moreover, from a logical point of view, simply-typed λ-terms constitute a proof system
for the implicational fragment of minimal logic – a variant of intuitionistic logic rejecting
the principle of explosion (Latin: ex falso sequitur quodlibet).

Definition 2.39 (Minimal logic). The implicational fragment of minimal logic I→ is
a proof system with an infinite, denumerable set of axioms in form of (Π, σ ` σ) for
each finite set of types Π (also called premises) containing type σ, and the following two
inference rules:

Π ` σ → τ Π ` σ(E →)
Π ` τ (2.33)

Π, σ ` τ(I →)
Π ` σ → τ

(2.34)

Figure 2.4: Inference rules of I→.

In words,

(i) If from a set Π of types we can infer both the types σ → τ and σ, then we can infer
the type τ from Π as well (the so-called implication elimination);

(ii) If from a set Π of types containing σ we can infer the type τ , then from Π without
σ we can infer the type σ → τ (the so-called implication introduction).

A type σ is said to be a I→-theorem if ∅ ` σ, i.e. σ can be inferred from an empty
set of premises.

The apparent analogy between simply-typed λ-terms and I→ is known in the literature
as the Curry-Howard correspondence.

Theorem 2.40 (Curry and Howard, see e.g. [SU06]). A type σ can be inferred from a set
{τ1, . . . , τn} of premises in I→ if and only if there exists a context Γ = {x1 : τ1, . . . , xn : τn}
and a λ-term N such that N is of type σ in the context Γ and moreover FV(N) =
{x1, . . . , xn}. In particular, σ is an I→-theorem if and only if there exists a closed λ-term
N such that N : σ.

Definition 2.41 (Substitution). A substitution ∆ is a finite collection of pairs of types
[a1/τ1, . . . , an/τn] where each ai is a unique type variable and each τi is a type. The result
of applying ∆ to a type σ, denoted as σ∆, is defined inductively as follows:

σ∆ =


τ∆→ ρ∆ if σ = (τ → ρ) ,

τi if σ = ai and ai/τi ∈ ∆ ,

σ if σ is a variable such that σ 6∈ {a1, . . . , an} .
(2.35)

Definition 2.42 (Principal types). Let N : σ. Then, σ is a principal type of N if for each
τ such that N : τ , σ is more general than τ , i.e. there exists a substitution ∆ such that
σ∆ = τ . In such a case τ is called an instance of σ.
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Example 2.43. Let us consider again λx.x. Certainly, we can assign to it one of infinitely
many types, for instance:

(i) λx.x : a→ a;

(ii) λx.x : (a→ a)→ (a→ a);

(iii) λx.x : (b→ c)→ (b→ c).

Note that a→ a is more general than either (a→ a)→ (a→ a) or (b→ c)→ (b→ c). In
the former case we have (a→ a)[a/(a→ a)] = (a→ a)→ (a→ a) whereas in the latter
one (a → a)[a/(b → c)] = (b → c) → (b → c). In fact, each type σ such that λx.x : σ
must be in form of τ → τ (see Example 2.37). Hence, a→ a is a principal type of λx.x.
However, a → a is not its unique principal type; an equally perfect principal type is, for
instance b→ b.

Principal types play an important role in the implementation of functional program-
ming languages, e.g. due to the prominent Hindley–Milner type system with parametric
polymorphism [Hin96] in which it is possible to automatically infer a principal type of a
function without explicit programmer-declared type annotations.

2.2.2 De Bruijn notation

The classic representation of λ-terms with variable names, though elegant and succinct for
manual manipulations, poses considerable problems with automatic substitution, e.g. in
implementations of functional programming languages [Pey87]. De Bruijn proposed the
following alternative representation of λ-calculus using natural integers, instead of variable
names [Bru72].

Definition 2.44 (λ-terms). Let I = {0, 1, 2, . . .} be an infinite, denumerable set of indices.
Then, the set of λ-terms is defined inductively as follows:

(i) Each index n ∈ I is a λ-term;

(ii) If N and M are λ-terms, then (NM) is a λ-term;

(iii) If N is a λ-term, then (λN) is a λ-term.

As in the classic notation, we follow standard notational conventions; we omit outermost
parentheses and drop parentheses from left-associated λ-terms.

It is worth mentioning that originally de Bruijn started indices with 1 instead of 0.
Here, we follow the convention started, to our best knowledge, by Lescanne (Lescanne,
personal communication, 2016).

In the de Bruijn notation, each variable x is replaced with an appropriate index n
intended to encode the distance between x and its binding abstraction. Specifically, the
index n represents a variable occurrence which binder is the (n+ 1)st abstraction on the
unique path from the index n to the term root. If there are less than n + 1 abstractions
on this path, for instance h < n + 1, then the index represents a free variable xn−h+1

assuming an arbitrary fixed listing (xn)n∈N of available variables. In consequence, each
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λ-term in the classic variable notation has a natural representation in the de Bruijn nota-
tion – remove variable labels in abstractions and replace each variable occurrence with an
appropriate index.

As in the classic variable notation, it is convenient to equate λ-terms in the de Bruijn
notation with their analogous λ-trees (see Definition 2.23).

Example 2.45. Consider the following λ-tree of T = λλ1(21):

λ

λ

1

2 1

Figure 2.5: λ-tree of T .

Here, T has two bound index occurrences 1 and a free one 2. The index 2 is free in T
as there are only two abstractions. Note however that if we add a single abstraction on
top of T , then 2 becomes bound.

A prominent feature of the de Bruijn notation is the fact that α-convertible λ-terms in
the classic variable notation have an identical de Bruijn representation. In consequence,
each λ-term in the de Bruijn sense represents an entire α-equivalence class of classic
terms. Moreover, as there are no variable names in this notation, the substitution in an
abstraction is significantly simplified; if we substitute M for an index n in λN we have to
increase n by one and continue with λ(N [(n + 1) := M ]). Variable renaming and capture
avoidance is therefore no longer an issue.

2.3 Combinatory logic

In this section we present the main notions of combinatory logic. As in the case of
λ-calculus, we refer the curious reader to the classic handbook [Bar84] for a detailed
exposition.

Definition 2.46 (Combinators). Let B be a finite basis of primitive combinators. Then,
the set of B-combinators is defined inductively as follows:

(i) Each primitive combinator X ∈ B is a B-combinator;

(ii) If N and M are B-combinators, then (NM) is a B-combinator.

In the latter case, we say that (NM) is an application of N to M .
If the underlying basis is clear from the context (or perhaps even irrelevant), we

write combinators (terms) instead of B-combinators. For convenience, instead of writ-
ing {X1, . . . , Xn}-combinators, we write X1 . . . Xn-combinators. And so, e.g. instead of
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{S,K}-combinators we simply write SK-combinators. Following standard notational con-
ventions, we omit outermost parentheses and drop parentheses from left-associated com-
binators, e.g. instead of writing ((MN)(PQ)) we writeMN(PQ). We use N,M,P,Q, . . .
to denote arbitrary combinators. To denote primitive combinators, we use lettersX, Y, . . ..

Definition 2.47 (Combinator trees). Let N be a combinator. The combinator tree of N
is defined inductively as follows:

(i) The combinator tree of a primitive combinator X is a single node labelled ‘X’;

(ii) If N = MP , then the combinator tree of N has a binary root with two subtrees –
the combinator tree of M on the left-hand side and the combinator tree of P on the
right-hand side.

As an example, consider the following representation of the SK-combinator T = SK(KS):

S K K S

Figure 2.6: Combinator tree representation of T .

As in the case of λ-terms, we equate combinators with their combinatorial represent-
ation. And so for instance, N is a subterm of M if the combinator tree of N is a subtree
of the combinator tree of M .

Definition 2.48 (Reduction). Let B be a combinator basis. Each primitive combinator
X ∈ B contributes a reduction rule →X in form of

XN1 . . . Nn →X M (2.36)

where n ≥ 1 and M is built from N1, . . . , Nn and application.
The reduction relation →w is then the least relation on B-combinators such that

(i) If XN1 . . . Nn →X M for some X ∈ B, then XN1 . . . Nn →w M ;

(ii) If N →w M , then for each P both PN →w TM and NP →w MP .

Combinators in form of XN1 . . . Nn are called redexes whereas their corresponding right-
hand side combinators M are called reducts. If N does not contain any redex as subterm,
then N is in normal form. If there exists a finite sequence N1, N2, . . . , Nm such that
N = N1, consecutive combinators form a reduction sequence, i.e. Ni →w Ni+1, and Nm is
in normal form, then N is (weakly) normalising. If all reduction sequences starting with
N are finite, then N is strongly normalising.

We use →∗w to denote the transitive reflexive closure of →w. The transitive closure of
→w is written as →+

w .



2.3. COMBINATORY LOGIC 23

Example 2.49. Throughout the literature different classic combinator bases are con-
sidered, such as {S,K}, {S,K, I} or {B,C,K,W}. The reduction rules for corresponding
primitive combinators are defined as follows:

SNMP →S NP (MP ); (2.37)
KNM →K N ; (2.38)

IN →I N ; (2.39)
BNMP →B N(MP ); (2.40)
CNMP →C NPM ; (2.41)
WNM →W NMM. (2.42)

Definition 2.50 (Universal combinator bases). Let B be a combinator basis. Then, B
is universal if there exist B-combinators S and K such that for arbitrary B-combinators
N,M,P the following conditions hold:

(i) SNMP →+
w NP (MP );

(ii) KNM →+
w N .

In such a case both S and K are said to implement S and K, respectively.

Example 2.51. Let us show that B = {B,C,K,W} is a universal combinator basis.
Certainly, K ∈ B hence is suffices to find a BCKW -combinator S implementing S. Let
us consider S = B(BW )(BBC). Then, for arbitrary BCKW -combinators N,M,P :

SNMP = B(BW )(BBC)NMP (2.43)
(2.40)→w BW (BBCN)MP (2.44)
(2.40)→w W (BBCNM)P (2.45)
(2.42)→w BBCNMPP (2.46)
(2.40)→w B(CN)MPP (2.47)
(2.40)→w CN(MP )P (2.48)
(2.41)→w NP (MP ). (2.49)

Hence, {B,C,K,W} is indeed a universal combinator basis.
On the other hand, not all bases are universal. Consider {S}. Note that in its reduction

rule (2.37) S copies all of its arguments to the reduct. It means that no S-combinator is
able to discard its arguments and thus able to implement K (2.38).

Definition 2.52 (Translation to λ-terms). Let X ∈ B be a primitive combinator with
a corresponding reduction rule XN1 . . . Nn →X M . Suppose we assign to X a λ-term
λx1 . . . xn.Ψ(M) where Ψ(M) is defined inductively as follows:

(i) If M = Ni, then Ψ(M) = xi;

(ii) If M = PQ, then Ψ(M) = Ψ(P )Ψ(Q).
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In words, we replace each occurrence of Ni in M with xi, translating the application of
B-combinators to application of λ-terms. The translation (·)λ of B-combinators to λ-terms
is then defined inductively as follows:

(i) (X)λ = Ψ(X);

(ii) (NM)λ = (N)λ(M)λ.

Proposition 2.53. If N →w M , then (N)λ →+
β (M)λ.

Proof. Note that if XN1 . . . Nn →X M , then (XN1 . . . Nn)λ →+
β (M)λ.

In consequence, it becomes possible to emulate the computations of B-combinators
in λ-calculus. Remarkably, the converse implication is also true, provided that B is a
universal combinator basis. The key idea in proving this fact is the construction of an
‘abstraction’ operation within the language of B-combinators acting as an abstraction in
λ-calculus.

Theorem 2.54 (Translation to B-combinators, see e.g. [Bar84]). Let B be a universal
combinator basis. Then, there exists a translation (·)B of λ-terms to B-combinators such
that for arbitrary closed λ-terms N,M if N →∗β M , then (N)B →∗w (M)B.

In consequence, we obtain the following classic result.

Theorem 2.55. Let B be a universal combinator basis. Then, the set of normalising
B-combinators is undecidable.

From a rewriting theory point of view, the set of B-combinators falls under the scope of
so-called left-normal orthogonal (also known as left-linear non-ambiguous) term rewriting
systems. In consequence, the properties of confluence and standard, leftmost-outermost
normalisation strategies follow as direct corollaries (see e.g. [Klo92]).

Theorem 2.56 (Confluence and standardisation). The set of B-combinators is confluent
under the reduction relation→w. In particular, each normalising combinator has a unique
normal-form. Moreover, if N is normalising, then the iterated process of reducing the
leftmost-outermost redex in N leads to the normal form of N .

2.3.1 Simply-typed combinators

As in the case of λ-calculus, simply-typed variants of combinatory logic are also considered
in the literature. In what follows, we related them with simply-typed variants of λ-calculus
and formalise the notion of typeability under various combinator bases.

Definition 2.57 (Typing rules). Suppose we equip SK-combinators with the following
typing system consisting of two axiom schemes and a single inference rule modus ponens:
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S : (a→ b→ c)→ (a→ b)→ a→ c (Axiom S)

K : a→ b→ c (Axiom K)

N : σ → τ M : σ
NM : τ

(Modus ponens)

Figure 2.7: Typing rules for simply-typed SK-combinators.

In words,

(i) The S combinator can be assigned any type σ which is an instance of the type
(a→ b→ c)→ (a→ b)→ a→ c;

(ii) The K combinator can be assigned any type σ which is an instance of a→ b→ a;

(iii) If N is of type σ → τ and M is of type σ, then the result (NM) of applying N to
M is of type τ .

A combinator N is typeable if there exists a type σ such that N is of type σ. We denote
this fact as N : σ.

Note that using the standard translation to λ-calculus (see Definition 2.52) we obtain
Ψ(S) = λxyz.xz(yz) and Ψ(K) = λxy.x. It is easy to verify that types for S and K are
precisely principal types for Ψ(S) and Ψ(K). By extension, we can therefore consider
other combinator bases with different axiom schemes.

Definition 2.58 (Sound combinator bases). Let B be a combinator basis. We say that
B is sound if the following conditions are satisfied:

(i) Each primitive combinator X ∈ B contributes an axiom scheme in form of

X : σ

where σ is a principal type of Ψ(X);

(ii) The set of typeable combinators is closed under (Modus ponens).



Chapter 3

Quantitative aspects of lambda-calculus

In the current chapter we focus on the quantitative properties of λ-terms in the de Bruijn
notation within the Gittenberger-Gołębiewski size notion framework [GG16].

Recall that in this framework, the size on a λ-term is defined as follows.

Definition 3.1 (λ-term size). Let a, b, c, d be non-negative integers and N be a λ-term
in the de Bruijn notation. Then, the size |N | of N is defined inductively as follows:

(i) If N = 0, then |N | = a;

(ii) If N = n + 1, then |N | = b+ |n|;

(iii) If N = λM , then |N | = c+ |M |;

(iv) If N = MP , then |N | = d+ |M |+ |P |.

In other words, de Bruijn indices are represented in a unary base using zero 0· and the
successor operator succ; the weights of zero, successor, abstraction and application are
a, b, c, d, respectively, and the size of a λ-term is the weighted sum of its constructors.

Moreover, in this general size notion framework constructor weights are assumed to
satisfy the following conditions:

(1) a+ d ≥ 1;

(2) b, c ≥ 1;

(3) gcd(b, c, a+ d) = 1.

Conditions (1) and (2) guarantee that the set of λ-terms forms a combinatorial class,
i.e. for each n the set of λ-terms of size n is finite. Note that if a and b are both equal
to 0, then it is possible to extend any λ-term with an arbitrary number of applications
and zeros without changing the initial term size. Similarly, if b or c are equal to 0, then
it is possible to insert arbitrarily long chains of abstractions or successors to a λ-term
without changing its size. Finally, condition (3) is a more subtle technical assumption
guaranteeing that the generating function corresponding to the set of λ-terms has a unique
singularity on the boundary of its disk of convergence.

We remark that the Gittenberger-Gołębiewski size model framework captures a broad
class of various size notions, including the natural one [Ben+16a] (take a = b = c = d = 1)
or Tromp’s binary size notion [GL15] (take b = 1 whereas a = c = d = 2). Furthermore,
we have the following common asymptotic approximation.

26
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Proposition 3.2 (Gittenberger and Gołębiewski [GG16]). Let L∞(z) denote the gener-
ating function corresponding to the set of λ-terms. Then,

L∞(z) =
1− zc −

√
(1− zc)2 − 4za+d

1−zb

2zd
. (3.1)

Moreover,

[zn]L∞(z) ∼ ρ−n
Cn−3/2

Γ(−1
2
)

(3.2)

where ρ is the smallest positive root of (1− zc)2(1− zb)− 4za+d and C is a model-specific
(i.e. depending entirely on the assumed size notion) constant.

Furthermore, as the radicand expression in (3.1) can be factored into (ρ−z)Q(z)
1−zb for some

determined polynomial Q(z) we can express L∞(z) as

L∞(z) =
1− zc −

√
(ρ−z)Q(z)

1−zb

2zd
=

1− zc −
√
ρQ(z)

1−zb

(
1− z

ρ

)
2zd

. (3.3)

Hence, by a straightforward algebraic singularity analysis, the specific constant C in (3.2)
can be expressed as

C = − 1

2ρd

√
ρ
Q(ρ)

1− ρb
. (3.4)

3.1 Model-independent results

In this section we are interested in model-independent properties of large random λ-terms.
We start with showing that plain (i.e. open or closed) λ-terms have the fixed subterm
property – asymptotically almost all λ-terms contain an arbitrary fixed λ-term as subterm.

Proposition 3.3 (Fixed subterm property). Let N be a fixed λ-term of size p and TN
be the set of λ-terms containing N as a subterm. Then, [zn]TN(z) and [zn]L∞(z) are
asymptotically equivalent.

Proof. Let M ∈ TN . Note that M is either equal to N , or N is a proper subterm of M .
Hence, in the case when M = λP , then P ∈ TN . On the other hand, if M = PQ, then
one of P and Q are in TN whereas the other one is an arbitrary λ-term. We can therefore
specify TN(z) as follows:

TN(z) = zp + zcTN(z) + 2zdTN(z)L∞(z)− zdTN(z)2 . (3.5)

Note that in the expression 2zdTN(z)L∞(z) we are counting each λ-term PQ containing
N as a subterm in both P and Q twice. Hence, to avoid double counting we have to
subtract zdTN(z)2.

Let ∆L∞(z) = (1− zc)2 − 4za+d

1−zb be the radicand in the closed-form expression (3.1) of
L∞(z). Note that

TN(z) =
−
√

∆L∞(z) ±
√

∆TN (z)

2zd
where ∆TN (z) = ∆L∞(z) + 4zd+p . (3.6)
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Since limz→0 ∆L∞(z) = limz→0 ∆TN (z) = 1 and d ≥ 1, by Riemann’s removable singu-
larities theorem (see Theorem 2.18) only

TN(z) =
−
√

∆L∞(z) +
√

∆TN (z)

2zd
(3.7)

is analytically continuable at the origin. It means that the generating function corres-
ponding to the set of λ-terms avoiding N as a subterm is given by

L∞(z)− TN(z) =
1− zc −

√
∆TN (z)

2zd
. (3.8)

And so, the smallest positive root ρT of ∆TN (z) dictates the exponential growth rate of the
sequence of λ-terms avoidingN as a subterm. Combining the facts that TN(z) corresponds
to a subclass of plain λ-terms (hence TN(z) � L∞(z)) and ∆TN (z) = ∆L∞(z) + 4zd+p, we
finally note that ρ < ρT which by virtue of the exponential growth formula implies our
claim.

In consequence, we obtain the following general corollary.

Corollary 3.4. Let A be a non-empty set of λ-terms such that if N ∈ A and M contains
N as a subterm, then M ∈ A. Then, asymptotically almost all λ-terms are in A, i.e. it is
a set of typical λ-terms.

In other words, all properties of λ-terms spanning to superterms are typical among
large random λ-terms. Alas, strong normalisation or typeability are not typical.

Corollary 3.5. Asymptotically almost every λ-term is neither in normal form nor strongly
normalising (hence also typeable).

Proof. Fix Ω = (λx.xx)(λx.xx). By Proposition 3.3 asymptotically each λ-term contains
Ω as a subterm; however, Ω is neither in normal form, normalisable or typeable.

Let us notice the striking discrepancy between the density of strongly normalising
terms in the de Bruijn size model and the corresponding density in the canonical model
considered in [Dav+13]. In the latter case, variables do not contribute to the term size
and, arguably, tend to be arbitrarily far from their binders. In the de Bruijn size model,
however, the size of a variable is proportional to the distance to its binding abstrac-
tion. Such an additional cost diminishes the average distance forcing indices to be rather
shallow.

Proposition 3.6. Let Xn be a random variable denoting the average de Bruijn weight
in a random λ-term of size n. Let µn denote the mean value of Xn. Then, µn tends to a
constant (depending entirely on the assumed size model) as n tends to infinity.

Proof. Consider the trivariate generating function L∞(z, v, w) in which [znvkwl]L∞(z, v, w)
(i.e. the coefficient standing by znvkwl) denotes the number of λ-terms of size n with
exactly k indices of total weight l and the related generating function D(z, v, w) of cor-
responding de Bruijn indices. Let us start with the latter.

Note that each index n corresponds to an n-fold application of succ to 0· . Hence,
in order to mark variable occurrences with v it suffices to mark the occurrences of 0· .
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Moreover, since the weight of an index coincides with its size, we can write the following
formula for D(z, v, w):

D(z, v, w) = vwaza + wbzbD(z, v, w)

=
vwaza

1− wbzb
. (3.9)

In consequence, the defining equation for L∞(z, v, w) is given as

L∞(z, v, w) = zcL∞(z, v, w) + zdL∞(z, v, w)2 +
vwaza

1− wbzb

=
1

2zd

(
1− zc −

√
(1− zc)2 − 4vwaza+d

1− wbzb

)
(3.10)

where (3.10) follows from the fact that, by its construction, L∞(z, 1, 1) coincides with the
univariate generating function corresponding to the set of plain λ-terms.

Now, utilising the symbolic moment techniques (see Section 2.1) we can express the
mean value µn as

µn =

[zn]

∫ v

0

dt

t

∂

∂w
L∞(z, t, w)

∣∣∣∣
v=w=1

[zn]L∞(z, 1, 1)
. (3.11)

Note that∫ v

0

dt

t

∂

∂w
L∞(z, t, w)

∣∣∣∣
v=w=1

= −

(
a− azb + bzb

)√
(1− zc)2 − 4za+d

1−zb

2zd (1− zb)
. (3.12)

A straightforward application of the algebraic singularity analysis yields an asymptotic
expansion in form of

[zn]

∫ v

0

dt

t

∂

∂w
L∞(z, t, w)

∣∣∣∣
v=w=1

∼ ρ−n
Cn−3/2

Γ(−1
2
)

where C = −a− aρ
b + bρb

2ρd (1− ρb)
. (3.13)

Comparing the obtained constant C with the corresponding constant in the asymptotic
expansion (3.4) of [zn]L∞(z) we note that

µn −−−→
n→∞

a− aρb + bρb

1− ρb
(3.14)

which finishes the proof.

And so, the average de Bruijn index weight tends to a model-specific constant. Moreover,
using (3.14) we can easily compute its precise quantity given the specific size notion. For
instance, for the natural size notion (a = b = c = d = 1) we have

µn −−−→
n→∞

1

1− ρ
≈ 1.41964 (3.15)

which indeed corresponds to remarkably shallow indices.

Let us conclude model-independent results with the observation that the set of nor-
malising λ-terms does not fall under the 0–1 asymptotic density regime in the set L∞ of
all λ-terms.
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Theorem 3.7. Let WN be the set of normalising λ-terms. Then

0 < µ−
(
WN
L∞

)
and µ+

(
WN
L∞

)
< 1 . (3.16)

The proof of the above theorem is analogous to its combinatory logic counterpart
(see Theorem 5.9) to which we refer the curious reader.

Combining the above result and that fact that the set of strongly normalising λ-terms
is asymptotically negligible in the set of plain λ-terms (see Corollary 3.5), we obtain the
following corollary.

Corollary 3.8. Asymptotically almost all weakly normalising λ-terms are not strongly
normalising.

3.2 Natural size model

In this section we focus on the natural size model [Ben+16b] in which all constructor
contribute one to the term size. Recall that by (3.1) the corresponding generating function
L∞(z) is then given by

L∞(z) =
1− z −

√
(1− z)2 − 4z2

1−z

2z
. (3.17)

And so, the specific constant C in the asymptotic approximation (3.2) of [zn]L∞(z) can
be computed by (3.4) yielding

C = − 1

2ρL∞

√
ρL∞

Q(ρL∞)

1− ρL∞
. (3.18)

Interestingly, using the Maple package gfun [SZ94] it is possible to automatically find
the following, surprisingly simple, holonomic specification (i.e. differential equation with
polynomial coefficients) of L∞(z):

z3 + z2 − 2z + (z3 + 3z2 − 3z + 1)L∞(z) + (z5 + 2z3 − 4z2 + z)L′∞(z) = 0 (3.19)

with the initial condition L∞(0) = 0. Such an implicit form of L∞(z) allows us to derive
a simpler, compared to the naive combinatorial definition, recursive scheme defining the
successive coefficients of L∞(z). Let us denote [zn]L∞(z) as L∞,n. Then, L∞,n satisfies
the following recursion:

L∞,0 = 0, L∞,1 = 1, L∞,2 = 2, L∞,3 = 4,

(n+ 1)L∞,n = (4n− 1)L∞,n−1 − (2n− 1)L∞,n−2 − L∞,n−3 − (n− 4)L∞,n−4 . (3.20)

Note that L∞,n depends on the previous four values L∞,n−1, L∞,n−2, L∞,n−3 and
L∞,n−4. Exploiting this fact, the above recursive relation allows us to compute the exact
value L∞,n using only linear number of arithmetic operations.

We remark that Bacher et al. developed an efficient exact-size sampler for Motzkin
trees by attaching a suitable combinatorial interpretation to the holonomic specification
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of considered trees [BBJ13]. Alas, no effective combinatorial interpretation of (3.19) is
known.

Nonetheless, (3.20) enables the efficient computation of the initial values of the se-
quence ([zn]L∞(z))n∈N known as A105633 in the Online Encyclopedia of Integer Se-
quences [Slo64]. The sequence starts as follows:

0, 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789.

Somewhat surprisingly, this sequence corresponds not only to plain λ-terms, but also to
two classes of trees, so-called black-white binary trees and binary trees without zigzags
(see e.g. [GLM08; STT06]). In what follows, we prove the correspondence between plain
λ-terms and black-white binary trees by exhibiting appropriate bijective translations. The
corresponding translations involving zigzag-free trees can be found in [Ben+16b].

3.2.1 E-free black-white binary trees

Definition 3.9 (Black-white binary trees). A black-white binary tree is a binary tree in
which nodes are coloured either black • or white ◦. Let E be a finite set of edges with
black or white endpoints. An E-free black-white binary tree is a black-white binary tree
in which edges from the set E are forbidden. The size of a black-white tree is the total
number of its nodes.

In order to show the declared correspondence, we are interested in a particular class of
black-white trees with the set E = { ◦

• ,
•
◦ ,

•
• ,

◦
◦ } of forbidden patterns; or dually,

the set A = { •
◦ ,

•
• ,

◦
◦ ,

◦
• } of allowed edge patterns. For convenience, we simply

write black-white trees to denote this class of trees. Moreover, unless otherwise stated,
we assume that black-white trees have black roots.

Proposition 3.10. There exists a size-preserving bijection between the set of λ-terms
and black-white trees.

Proof. Let BW• and BW◦ denote the set of black-white trees with a black, respectively
white, root. Interpreting the set A of allowed edges combinatorially, we can define both
BW• and BW◦ using the following mutually recursive specifications:

BW• = • + •
BW•

+ •
BW◦

BW◦ = ◦ +
◦

BW◦
+
◦
BW•

+
◦

BW◦ BW•
.

Such a representation yields the following identities on the corresponding generating
functions BW•(z) and BW◦(z):

BW•(z) = z + zBW•(z) + zBW◦(z) , (3.21)
BW◦(z) = z + zBW◦(z) + zBW•(z) + zBW◦(z)BW•(z) (3.22)

thus
(1− z)zBW 2

• (z)− (1− z)2BW•(z) + z = 0 . (3.23)

http://oeis.org/A105633
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Note that we can now divide both sides of (3.23) by (1− z) and obtain

zBW 2
• (z)− (1− z)BW•(z) +

z

1− z
= 0 (3.24)

which yields the same solution as for the set of λ-terms (3.17). Both generating functions
BW•(z) and L∞(z) are hence equal, so necessarily they represent the same counting
sequence.

The bijective translation LtoBw from λ-terms to black-white trees and the inverse
translation BwtoL from black-white trees to λ-terms are given pictorially as follows:

0· LtoBw−−−→ • • BwtoL−−−→ 0·

succ n
LtoBw−−−→ LtoBw(n)

•

t

•
BwtoL−−−→ succBwtoL(t)

λM
LtoBw−−−→ LtoBw(M)

◦

t

◦
BwtoL−−−→ λBwtoL(t)

M1M2
LtoBw−−−→

LtoBw(M2)

◦

LtoBw(M1)

t2

◦

t1

BwtoL−−−→ BwtoL(t1) BwtoL(t2)

Proposition 3.11. Both LtoBw and BwtoL are mutually inverse bijections.

In order to translate a given black-white tree t into a corresponding λ-term, we de-
compose t depending on the type of its leftmost node. If t is a single black node •, we
translate it into 0· . Otherwise, we have to consider three cases based on the set A of
allowed edges and map them into λ-abstraction, successor, or application, respectively.

Example 3.12. Consider the black-white trees corresponding to:

• Ω = (λx.xx)(λx.xx) = (λ(00))λ(00), and

• Y = λf.(λx.f(xx))(λx.f(xx)) = λ(λ(1 (00))λ(1 (00)))

LtoBw(Ω) •
◦

◦ •
◦
•

◦
◦ •

LtoBw(Y ) •
◦

◦ •
◦ •

◦ •
◦ •
◦

◦ •
◦ •
•

Our Haskell implementations of LtoBw and BwtoL, tested using QuickCheck [CH00],
can be found at [Ben16c].
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3.2.2 Neutral λ-terms and β-normal forms

In this subsection we focus on the class N of β-normal forms and the associated classM
of neutral terms, i.e. normal forms without head abstractions. Specifically, we exhibit a
correspondence between both classes of terms and Motzkin numbers (known as A001006
in the Online Encyclopedia of Integer Sequences [Slo64]) associated with, inter alia, so-
called Motzkin trees, i.e. plane unary-binary trees.

Let us start with the following observation.

Proposition 3.13. There exists a size-preserving bijection between the set of λ-terms in
normal form and Motzkin trees.

Proof. Note that the combinatorial specification defining normal forms by means of neut-
ral terms can be given as follows:

N = M + λN
M = MN + D
D = succD + 0· .

In words, normal forms are either neutral or start with a head abstraction. Neutral terms,
in turn, are either de Bruijn indices or in form of an application of a neutral term to a
normal form.

Such a specification yields the following system of equations for the corresponding
generating functions:

N(z) = M(z) + zN(z) ,

M(z) = zM(z)N(z) +D(z) ,

D(z) = zD(z) + z .

Once solved, we obtain the following generating functions:

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
and N(z) =

M(z)

1− z
. (3.25)

Note that M(z) is in fact the generating function corresponding to the counting se-
quence of Motzkin numbers (see e.g. [FS09, p. 396]). It means therefore that there exists a
size-preserving bijection between Motzkin trees and neutral forms, finishing the proof.

Similarly to the case of black-white trees, we provide bijective translations between
normal forms and Motzkin trees. Let un denote the unary path of size n > 0. We start by
defining two auxiliary operations UnToL and UnToD, translating unary paths into λ-paths
(i.e. paths with each vertex labelled by λ) and de Bruijn indices, respectively:

• UnToL−−−→ λ • UnToD−−−−→ 0·

•
un

UnToL−−−→
λ

UnToL (un)

•
un

UnToD−−−−→
succ

UnToD (un)

http://oeis.org/A001006
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With UnToL and UnToD we are now ready to give the bijective translation MoToNe from
Motzkin trees to corresponding neutral terms:

un
MoToNe−−−−→ UnToD (un)

un

•

t t′

MoToNe−−−−→

@

MoToNe (t) UnToL (un)

MoToNe (t′)

•

t t′

MoToNe−−−−→
@

MoToNe (t) MoToNe (t′)

Proposition 3.14. MoToNe is a bijection.

In order to translate a Motzkin tree to a corresponding neutral term we have to
consider two cases; either we are given a Motzkin tree starting with a unary node or a
Motzkin tree starting with a binary node.

The latter case is straightforward due to the fact that binary nodes correspond to neut-
ral term applications. Suppose that we are given a Motzkin tree starting with a unary
path un of size n. We have to decide whether the path corresponds to a de Bruijn index
or to a chain of λ-abstractions. This distinction is uniquely determined by the existence
of the path’s splitting node – the binary node directly below un. If un has a splitting
node, then it corresponds to a chain of n abstractions which will be placed on top of the
corresponding right neutral term constructed recursively from the splitting node of un.
Otherwise, un corresponds to the nth de Bruijn index.

What remains is to give the inverse translation NeToMo from neutral terms to Motzkin
trees. Let LToUn and DToUn denote the inverse functions of UnToL and UnToD, respect-
ively. Let ln denote the unary λ-path of size n > 0.

The translation NeToMo is then defined as

n
NeToMo−−−−→ DToUn (n)

@

t ln

t′

NeToMo−−−−→

LToUn (ln)

•

NeToMo (t) NeToMo (t′)

where t′ does not start with a head λ

@

t t′
NeToMo−−−−→

•

NeToMo (t) NeToMo (t′)

Proposition 3.15. Both MoToNe and NeToMo are mutually inverse bijections.
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Example 3.16. Consider the neutral term P = 0 (λλ01). The following figure presents
P and its Motzkin tree counterpart through the translation MoToNe.

P @

0 λ

λ

@

0 1

MoToNe(P ) •
•
•

• •
• •

•

Note that the simple translation NeToMo allows us to design an effective exact-size
sampler for neutral λ-terms in the natural size notion, based on the sampler for Motzkin
trees of Bacher et al. [BBJ13]. Given a non-negative integer n, we sample a uniformly
random Motzkin tree of size n. Subsequently, we use the NeToMo translation to convert
it into a corresponding neutral λ-term. As our translation is linear in time and space, the
overall complexity of the described sampler is, on average, linear in both time and space.

3.2.3 Head normal forms

In this subsection we are interested in the class of head normal forms, i.e. λ-terms without
head redexes and the associated auxiliary set K of neutral head normal forms, as defined
by the following combinatorial specification:

H = K + λH
K = KL∞ + D .

In words, a head normal form either starts with a head λ-abstraction followed by
another head normal form or is a neutral head normal form itself. In the latter case, it
must be a de Bruijn index or an application of a neutral head normal form to an arbitrary
λ-term.

Translating the above specification into a corresponding system of functional equations
we obtain:

H(z) = K(z) + zH(z) ,

K(z) = zK(z)L∞(z) +D(z)

and hence
K(z) =

D(z)

1− zL∞(z)
whereas H(z) =

K(z)

1− z
. (3.26)

In consequence
K(z) = z + zL∞(z) . (3.27)

Note that (3.27) suggests a specific correspondence between the set of neutral head
normal forms and the set of plain λ-terms.

Consider the following partial mapping from K to L∞:

0· N1N2 . . . Nm 7→ (λN1)N2 . . . Nm where m > 0 ,

(succ n)N1 . . . Nm 7→ nN1 . . . Nm where m ≥ 0 .
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Note that neutral head normal forms are of size one greater than the size of their
plain λ-term counterparts. Since each plain λ-term is either in form of (λN1)N2 . . . Nm

for some m > 0 or nN1 . . . Nm (in this case m can be equal to 0), the above mapping
is surjective which explains the expression zL∞(z) in (3.27). The only λ-term in neutral
head normal form not covered by the mapping is 0· of size one, hence we have to add the
additional z to (3.27).

In consequence, we obtain the following density results.

Proposition 3.17. The asymptotic density of neutral head normal forms in the set of
plain terms is equal to ρL∞ ≈ 0.29559.

Proof. Solving (3.27) we obtain the following closed-form expression of K(z):

K(z) = z +
1

2

(
1− z −

√
(1− z)2 − 4z2

1− z

)
. (3.28)

A straightforward application of the algebraic singularity analysis gives us the following
asymptotic approximation for [zn]K(z):

[zn]K(z) ∼ ρ−nL∞
Cn−3/2

Γ(−1
2
)

where C = −1

2

√
ρL∞

Q(ρL∞)

1− ρL∞
. (3.29)

Comparing (3.29) with (3.17) we obtain

lim
n→∞

[zn]K(z)

[zn]L∞(z)
= ρL∞ (3.30)

which finishes the proof.

Proposition 3.18. The asymptotic density of head normal forms in the set of plain terms
is equal to ρL∞

1−ρL∞
≈ 0.41964.

Proof. From (3.26) we get the following closed-form expression for H(z):

H(z) =
1

2(1− z)

(
1− z −

√
(1− z)2 − 4z2

1− z

)
+

z

1− z
. (3.31)

As in the case of K(z), a straightforward application of the algebraic singularity analysis
gives us the following asymptotic approximation for [zn]H(z):

[zn]H(z) ∼ ρ−nL∞
Cn−3/2

Γ(−1
2
)

where C = − 1

2(1− ρL∞)

√
ρL∞

Q(ρL∞)

1− ρL∞
. (3.32)

Comparing (3.32) with (3.17) we get

lim
n→∞

[zn]H(z)

[zn]L∞(z)
=

ρL∞
1− ρL∞

(3.33)

which finishes the proof.
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3.3 Random generation

Standard property-based test generation tools, such as QuickCheck [CH00], provide a set
of combinators (i.e. auxiliary higher order functions) facilitating the process of ad-hoc
sampler construction. The outcome distribution of generated structures is usually neg-
lected or left for the programmer to control. In consequence, careless sampler design
might lead to undesired distributions, favouring certain structures over others or even
excluding significant portions of the considered sample space. In this context, the most
‘unbiased’ distribution is the uniform one, assigning to all structures of equal size the
same probability as, e.g. in the rigorous mathematical framework of Boltzmann models.

In the case when we possess a finite combinatorial specification amenable to the tech-
niques of analytic combinatorics and related Boltzmann models, it is relatively straight-
forward to design an efficient Boltzmann sampler or even have it designed automatic-
ally by means of numerical Boltzmann oracles [PSS12] (cf. concrete OCaml implementa-
tions [CD09; Dar+12] and Haskell ones [Xia16; Ben16a]). However, if no finite combin-
atorial specification is available, we can use the method of rejection sampling, i.e. sample
random structures from a larger but finitely specifiable class, until we obtain a structure
with desired properties. Such an approach has an unfortunate drawback – the main com-
putational cost originates from the number of retrials, rather than the sampling process
itself. In this context, positive asymptotic density implies a constant expected number of
retrials; however, if this is not the case and the desired property is asymptotically negli-
gible in the larger class of structures, the method of rejection sampling quickly becomes
intractable. In consequence, alternative techniques have to be employed.

3.3.1 Closed and typeable λ-terms

From the practical perspective of software verification, in particular compiler testing, the
most interesting subclasses of random λ-terms are closed typeable ones [Pał12; CH00]. Un-
fortunately, no finite admissible combinatorial specification for closed or typeable λ-terms
is known. Moreover, due to Corollary 3.5 the set of typeable λ-terms is asymptotically
negligible in the set of all λ-terms; hence, rejection sampling becomes intractable already
for relatively small term sizes.

Our techniques for random generation of closed typeable λ-terms combine rejection
sampling with Prolog systems offering a convenient synergy between logic variables, uni-
fication with occurs check and efficient backtracking [BGT16]. Key refinements used in
this approach are the following:

(i) Concentrate the expected outcome size around a small finite value;

(ii) Use multiple concurrent threads to speed-up the sampling process;

(iii) Restart the sampling process as soon as it is discovered that the currently constructed
λ-term cannot be closed, e.g. due to the occurrence of unbound variables or be
typeable, e.g. due to the existence of a non-typeable subterm such as λx.xx.

Such an approach allows us to achieve terms of greater size (approximately 120–140 for the
natural size notion) compared with naive rejection sampling; nonetheless the intriguing
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problem of finding direct and efficient methods for random generation of closed typeable
λ-terms is still open. Our Prolog sampler implementation is available at [Tar16].

In the case of closed (not necessarily typeable) λ-terms, moderately efficient rejec-
tion sampling becomes available as a by-product of the quantitative analysis of so-called
m-open λ-terms by Gittenberger and Gołębiewski.

Definition 3.19 (m-open λ-terms). A λ-term N is m-open if λmN , i.e. N with a leading
chain of m abstractions, is a closed λ-term.

Naturally, if N is m-open, then it is also (m + 1)-open. Moreover, the set of 0-open
λ-terms is precisely the set of closed λ-terms.

Theorem 3.20 (Gittenberger and Gołębiewski [GG16, Theorem 4]). Let ρ be the smallest
positive root of (1 − zb)(1− zc)2 − 4za+d. Then there exist positive constants C and C
depending on the specific size model and m, such that the number of m-open λ-terms
satisfies

lim inf
n→∞

[zn]Lm(z)

Cn−3/2ρ−n
≥ 1 and lim sup

n→∞

[zn]Lm(z)

Cn−3/2ρ−n
≤ 1 . (3.34)

In particular, this result asserts the asymptotic density of closed λ-terms in the set of
plain ones cannot be equal to zero. Nonetheless, the expected number of retrials is quite
significant (roughly 13 in the case of the natural size notion).

An efficient Haskell implementation of a dedicated rejection Boltzmann sampler for
closed λ-terms is available as a Cabal package lambda-sampler [Ben16b]. Our imple-
mentation was tested using QuickCheck [CH00].

3.3.2 Closed h-shallow λ-terms

In large random λ-terms de Bruijn indices are on average bounded by a global constant
and so represent variables with small average depth. Hence, the class of closed λ-terms
with bounded indices becomes of special interest. In the following subsection we focus on
the random generation of this restricted subclasses of so-called closed h-shallow λ-terms.

Definition 3.21 (h-shallow λ-terms). Let h ≥ 1. A λ-term N is said to be h-shallow if
each de Bruijn index in N consists of at most h−1 successors. In other words, each index
in N is an element of the set {0, 1, . . . , h− 1}.

Let Lhm denote the set ofm-open h-shallow λ-terms. Then, the set of all closed λ-terms
is equal to L∞0 , i.e. the set of 0-open λ-terms with unbounded indices. Let us consider Lhi
for an arbitrary i < h. Note that Lhi can be given by means of the following specification:

Lhi = λLhi+1 + Lhi Lhi + 0 + · · ·+ i− 1 for 0 ≤ i < h (3.35)

with the defining equation for Lhh being

Lhh = λLhh + LhhLhh + 0 + · · ·+ h− 1 . (3.36)

In words, the class Lhi consists of abstractions in form of λLhi+1 (note that we have to
increase the index i), applications in form of Lhi Lhi and indices 0 + · · · + i− 1. The final
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equation for Lhh is almost identical to the equation for Lhi – the only difference is that we do
not increase the index for abstractions in form of λLhh. Intuitively, such a representation
allows us to use the openness index i as a ‘counter’ for the number of abstraction up to
h above in the generated terms.

Let us consider Lh0 , i.e. the set of closed h-shallow λ-terms. Certainly, Lh0 is defined
using a system of h + 1 equations constituting Lh0 ,Lh1 , . . . ,Lhh. Note that in its specific-
ation (3.36) Lhh depends on itself and no other equation in the system. Therefore, by
translating its specification into a functional equation in Lhh(z) we obtain the following
quadratic equation:

Lhh(z) = zcLhh(z) + zdLhh(z)
2

+
za(1− zbh)

1− zb
(3.37)

which by Riemann’s removable singularities theorem (see Theorem 2.18) yields the fol-
lowing solution:

Lhh(z) =
1

2zd

(
1− zc −

√
(1− zc)2 − 4za+d (1− zbh)

1− zb

)
. (3.38)

Now, suppose that we have computed the closed-form solution of Lhi+1(z) for some
0 ≤ i < h and intend to find the closed-form for Lhi (z), i.e. the generating function
corresponding to Lhi . Note that in its defining equation (3.35) Lhi depends on itself and
Lhi+1. The corresponding functional equation defining Lhi (z) is then equal to

Lhi (z) = zcLhi+1(z) + zdLhi (z)2 +
za
(
1− zbi

)
1− zb

=
1

2zd

(
1−

√
1− 4zd

(
zcLhi+1(z) +

za (1− zbi)
1− zb

))
(3.39)

where (3.39) follows again by Riemann’s removable singularities theorem. Since we have
computed Lhi+1(z), the above equation gives the closed-form solution for Lhi (z). Iterating
this process, it becomes now possible to find the generating function Lh0(z) and, in par-
ticular, evaluate the whole system for each parameter x in the interval (0, ρh) where ρh
denotes the dominating singularity of Lh0(z).

Gittenberger and Gołębiewski [GG16] prove that ρh is in fact the smallest positive
root of the innermost radicand of Lh0(z), i.e.:

rh(z) = (1− zc)2 −
4za+d

(
1− zbh

)
1− zb

. (3.40)

Moreover, with h tending to infinity, ρh tends to ρ, i.e. the smallest positive root of

r(z) = (1− zc)2 − 4za+d

1− zb
. (3.41)

Since r(z) = (1− zc)2 (1−zb)−4za+d is concave [GG16, see Proposition 2] and has the
same roots as r(z) it is possible to find numerical approximations of ρ using the rapidly
converging Newton-Raphson method.
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Theorem 3.22 (Thorlund-Petersen [Tho04]). Let f : R→ R be a differentiable concave
function on the interval I = (a, b) with a single simple root ζ ∈ I. Then, the Newton-
Raphson sequence (xn)n∈N defined as

xn+1 = xn −
f(xn)

f ′(xn)
(3.42)

converges quadratically to ζ for any initial guess x0 ∈ (a, b).

Let rh(z) =
(
1− zb

)
(1− zc)2 − 4za+d

(
1− zbh

)
. Certainly, rh(z) has the same roots

as rh(z). Note that
rh(z) = r(z) + 4za+d+bh . (3.43)

In particular rh(ρ) = 4ρa+d+bh and so ρh is relatively close to ρ. We can therefore use the
Newton-Raphson method to approximate ρh using ρ as the initial guess or, alternatively,
use the slower but more robust bisection method in the interval (ρ, 1). Once computed, we
can use ρh to evaluate Lh0(ρh) and in consequence design an efficient Boltzmann sampler
for closed h-shallow λ-terms (see Section 2.1.2).

Our Haskell implementation of a dedicated Boltzmann sampler for closed h-shallow
λ-terms, able to generate closed 30-shallow λ-terms of sizes above 100, 000 in a few seconds
on a standard PC, is included in the Cabal package lambda-sampler [Ben16b].



Chapter 4

Normal-order reduction grammars

In the current chapter we focus on the combinatorial structure of normalising combinators.
Specifically, we present an algorithm which, for given n, generates an unambiguous regular
tree grammar Rn defining the set of SK-combinators, requiring exactly n normal-order
reduction steps to normalise.

Definition 4.1 (Regular tree grammar). A regular tree grammar G = (A,N,F , P ) con-
sists of an axiom A, a set N of non-terminal symbols such that A ∈ N , a set of terminal
symbols F with corresponding arities and a finite set of production rules P of the form
α → β where α ∈ N is a non-terminal and β ∈ TF(N) is a term in the corresponding
term algebra TF(N), i.e. the set of directed trees built upon terminals F according to
their associated arities.

To build terms of grammar G, we start with the axiom A and use the corresponding
derivation relation, denoted by →, as defined through the set of production rules P .

We refer the curious reader to [Com+07] for a detailed exposition on tree grammars.

Example 4.2. Consider the following regular tree grammar defined as B = (A,N,F , P )
where A := B, N := {B}, F := {•, ◦(·, ·)}, and P consists of the two following rules:

B → ◦(B,B);

B → •.

Note that B defines the set of terms isomorphic to plane binary trees where leaves cor-
respond to the constant • and inner nodes correspond to the binary terminal ◦(·, ·).

In our endeavour, we are recursively constructing regular tree grammars generating
sets of SK-combinators. We describe their axioms, terminal and non-terminal symbols
here, leaving the algorithm, given in the following section, to define the remaining pro-
duction rules. And so, the nth grammar Rn will have:

(i) an axiom A = Rn;

(ii) a set F of terminal symbols consisting of two constants S, K and a single binary
application operator;

(iii) a set of non-terminal symbols Nn = {C} ∪ {R0, . . . , Rn} where C denotes the axiom
of the set of all combinatory logic terms given by the grammar C := S | K | C C.

In other words, the grammar Rn defining terms normalising in n steps, will reference all
previous grammars R0, . . . , Rn−1 and the set of all combinatory logic terms C.

Throughout this chapter we adopt the following common definitions and notational
conventions. To denote arbitrary combinators, we write x, y, z, . . .. We use lower case
letters α, β, γ, δ, . . . to denote trees, i.e. elements of the term algebra TF(Nn) where Nn =

41
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{C} ∪ {R0, . . . , Rn} for some n. Capital letters X, Y, . . . are used to designate one of S or
K without specifying which one. We define the size of α as the number of applications
in α. We say that α is normal if either α is of size 0 or α = Xα1 . . . αm, for some m ≥ 1
where all α1, . . . , αm are normal. In the latter case we say moreover that α is complex.
Since we are going to work exclusively with normal trees, we assume that all trees are
henceforth normal. We say that a complex α is of length m if α is in form of Xα1 . . . αm.
Otherwise, if α is not complex, we say that it is of length 0. The degree of α, denoted as
ρ(α), is the minimum natural number n such that α does not contain references to any
Ri for i ≥ n. In particular, if α does not reference any reduction grammar, its degree
is equal to 0. We use LG(α) to denote the language of α in grammar G, i.e. the set of
terms generated by G starting with α. Since Rn does not reference grammars of greater
index, we have LRρ(α)−1

(α) = LRn(α) for arbitrary n ≥ ρ(α). And so, for convenience,
we use L(α) to denote the language of α in grammar Rρ(α)−1 if ρ(α) > 0. Otherwise, if
ρ(α) = 0 we assume that L(α) denotes the language of α in grammar C. Finally, we say
that two normal trees are similar if both start with the same combinator X and are of
equal length.

Example 4.3. Consider the following trees:

(i) α = S(KR1)C;

(ii) β = K(CS)R0.

Note that both α and β are of size 3 and of equal length 2, although they are not similar
since both start with different combinators. Moreover, only α is normal as β has a subtree
CS, which is of positive size, but does not start with a combinator. Since α contains a
reference to R1 and no other reduction grammar, its degree is equal to 2, whereas the
degree of β is equal to 1.

A crucial observation, which we exploit in our construction, is the fact that normal
trees preserve length of generated terms. In other words, if α is of length m ≥ 1, then
any term x ∈ L(α) is of length m as well, i.e. x = Xx1 . . . xm.

4.1 Pseudo-codes and implementation

We state our algorithm using functional pseudo-codes formalising key design subroutines.
The adopted syntax echoes basic Haskell notation and built-in primitives, though we allow
the use of certain abbreviations making the overall presentation more comprehensible.
And so, we use the following data structure representing normal trees.

-- | Normal trees.
data Tree = S | K | C | R Int

| App Tree Tree

In our subroutines, we use the following ‘syntactic sugar’ abbreviating the structure of
normal trees.
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-- | Syntactic sugar.
X a_1 ... a_m := App X (App a_1 (... App a_{m-1} a_m) ...)

Moreover, we allow the use of this abbreviated notation in pattern matching. Specifically,
by writing (X a_1 ... a_m) we intend to match a complex tree of length m for some
m ∈ N. If multiple arguments are supposed to share the same length, we use the same
natural number m, e.g. (X a_1 ... a_m) and (X b_1 ... b_m).

Finally, suppose we have a function f :: a -> [b] and wish to obtain the set-
theoretic union of the image of [a] through f. In such a case we use the following
subroutine.

unionMap :: Eq b => (a -> [b]) -> [a] -> [b]
unionMap f xs = nub (concatMap f xs)

A working Haskell implementation of our algorithm is available at [Ben16d].

4.2 Algorithm

The key idea used in the construction of reduction grammars is to generate new produc-
tions in Rn+1 based on the productions in Rn. As the base of our inductive construction,
we use the set of normal forms R0 given by

R0 := S | K | SR0 | KR0 | SR0R0 . (4.1)

Clearly, primitive combinators S and K are in normal form. If we take a normal form
x, then both S x and K x are again normal since we did not create any new redex. For
the same reason, any term Sx1x2 where x1 and x2 are normal forms, is itself in normal
form. And so, with the above grammar we have captured exactly all redex-free terms.

Let us consider productions of R0. Note that from both the cases of SR0 and KR0

we can abstract a more general rule — if x reduces in n steps, then Sx and Kx reduce in
n steps as well, since after reducing x we have no additional redexes left to consider. It
follows that any Rn should contain productions SRn and KRn. Similarly, from the case
of SR0R0 we can abstract a more general rule — if Sx1x2 reduces in n steps, then both
x1 and x2 must reduce in total of n steps. The normal-order reduction of Sx1x2 proceeds
to normalise x1 and then x2 in sequence. As there is no head redex, after n steps we
obtain a term in normal form. And so, Rn should also contain productions SRiRn−i for
i ∈ {0, . . . , n}.

As we have noticed, all the above productions do not contain head redexes and hence
do not increase the total amount of required reduction steps to normalise. Formalising the
above observations, we say that α is short if either α = Xα1 or α = Sα1α2. Otherwise,
α is said to be long. Hence, we can set a priori the short productions of Rn for n ≥ 1 and
continue to construct the remaining long productions. Naturally, as we consider terms
over two primitive combinators S and K, we distinguish two types of long productions,
i.e. S- and K-Expansions.
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4.2.1 K-Expansions

Let us consider a production α = Xα1 . . . αm where m ≥ 0. The set K-Expansions(α)
is defined as {

K(Xα1 . . . αk)Cαk+1 . . . αm | k ∈ {0, . . . ,m− 1}
}
. (4.2)

Proposition 4.4. Suppose that x ∈ L(K(Xα1 . . . αk)Cαk+1 . . . αm). If x →w y, then
y ∈ L(Xα1 . . . αm).

Proof. Let x = K(Xx1 . . . xk)zxk+1 . . . xm. Let us consider its immediate reduct y =
Xx1 . . . xkxk+1 . . . xm. Clearly, xi ∈ L(αi) for i ∈ {1, . . . ,m} which finishes the proof.

In other words, the set K-Expansions(α) has the property that any K-Expansion
of α generates terms that reduce in one step to terms generated by α. If we compute the
sets K-Expansions(α) for all productions α ∈ Rn, we have almost constructed all of the
long K-productions in Rn+1. What remains is to include the production KRnC as any
term x ∈ L(KRnC) reduces directly to y ∈ L(α) for some production α ∈ Rn.

We use the following subroutine computing the set of K-Expansions of a given pro-
duction.

1 -- | Returns K-Expansions of the given production.
2 kExpansions :: Tree -> [Tree]
3 kExpansions p = case p of
4 (K a_1 ... a_m) -> kExpansions' K [a_1,...,a_m]
5 (S a_1 ... a_m) -> kExpansions' S [a_1,...,a_m]
6 where
7 kExpansions' _ [] = []
8 kExpansions' h [x_1,...,x_k] = K h C x_1 ... x_k
9 : kExpansions' (App h x_1) [x_2,...,x_k]

4.2.2 S-Expansions

Let us consider a production α = Xα1 . . . αm where m ≥ 0. We would like to define
the set S-Expansions(α) similarly to K-Expansions(α), i.e. in such a way that any
term generated by an S-Expansion of α reduces in a single step to some y ∈ L(α).
Unfortunately, defining and computing such a set is significantly more complex than the
corresponding K-Expansions(α).

Let q = Xx1 . . . xkz(yz). Suppose that q ∈ L(α) for some production α ∈ Rn. Since
S(Xx1 . . . xk)yz →w q, we would like to guarantee that S(Xx1 . . . xk)yz ∈ L(β) for some
β ∈ S-Expansions(α). Assume that α = Xα1 . . . αkγδ where z ∈ L(γ) and yz ∈ L(δ).
Note that although z ∈ L(γ) and yz ∈ L(δ) it might happen that δ 6= δ′γ for any δ′.
Indeed, take δ = C and γ = KRn. Let z = Kz1 for an arbitrary z1 ∈ L(Rn) whereas
y = S. We have z = Kz1 ∈ L(KRn) and yz = y(Kz1) ∈ L(C), however γ is not a suffix
of δ.

The above example highlights the main obstacle in finding S-Expansions(α) – given
γ, δ such that z ∈ L(γ) and yz ∈ L(δ) we cannot decompose δ into δ′γ and set β =
S(Xα1 . . . αk)δ

′γ as the resulting S-Expansions(α). Such a set of S-Expansions might
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generate a language containing additional terms, not reducing in a single step to some
y ∈ L(α). Instead, we have to be more subtle and find ηζ such that L(ζ) ⊆ L(γ) and
L(ηζ) ⊆ L(δ). Using them instead of γδ we construct a, potentially huge, set T of trees in
form of S(Xα1 . . . αk)ηζ constituting S-Expansions(α). Fortunately, it is possible to find
a finite set consisting of ηζ such that L(T ) captures the indented set of S-Expansions
and nothing more.

In order to find such a set, we require an additional ‘rewriting’ operation on trees that
allows us their specialisation, i.e. narrowing the languages they generate. Let us consider
the following extension B of the standard derivation relation →:

α B β ⇔ α→ β ∨ (α = C ∧ ∃n∈N β = Rn) . (4.3)

In words, α B β if β can be derived from α, e.g β is a production of α, or α is a
tree representing the set of all combinatory logic terms whereas β represents the set of
combinatory logic terms reducing in n steps.

Let D denote the transitive-reflexive closure of B. If α D β, we say that α rewrites to
β. The important property of D is the fact that if α D β, then L(β) ⊆ L(α). Since D is
not a total order on trees, there exist trees incomparable through D, e.g. S and K. To
denote the fact that α does not rewrite to β and vice versa, we use the symbol α ‖ β. In
such a case we say that α and β are non-rewritable. Otherwise, if one of them rewrites
to the other (α D β or β D α), meaning that α and β are rewritable, we use the symbol
α BC β.

Equipped with the rewriting operation D, we have obtained a tool to specialise trees.
Now, in order to find appropriate ηζ such that L(ζ) ⊆ L(γ) and L(ηζ) ⊆ L(δ), it suffices
to focus on the rewriting set RewritingSet(γ, δ) of γ and δ, consisting of ηζ such that
γ D η and δ D ηζ. In our algorithm, we will guarantee that the constructed rewriting set
allows us to find the intended unambiguous set of S-Expansions.

The task of computing RewritingSet(γ, δ) is a fairly straightforward case analysis
of δ’s structure, except for when δ = Xδ1 . . . δm and γ ‖ δm. In order to continue our
computations, we have to find a set of trees τ such that both γ D τ and δm D τ . In order
words, the set MeshSet(γ, δm) of all trees (also called meshes) τ such that both γ and
δm rewrite to. In our algorithm, we construct the MeshSet(γ, δm) in such a way, that
it generates the whole joint sublanguage of both γ and δm. Once found MeshSet(γ, δm)
allows to finish the construction of RewritingSet(γ, δ) and hence also the desired set
of S-Expansions.

And so, finding S-Expansions(α) for some α ∈ Rn+1 depends on computing appro-
priate mesh sets which, in turn, might depend on the previously computed grammars
R0, . . . , Rn. For that reason, we start with defining the MeshSet operation. Then,
we give the RewritingSet operation, based on the definition of MeshSet. Finally,
using RewritingSet we present S-Expansions, which together with K-Expansions
constitutes the defining algorithm of reduction grammars (Rn)n∈N.

Mesh Set

In the endeavour of finding appropriate S-Expansions rewritings, we need to find com-
mon meshes of given non-rewritable trees α ‖ β. In other words, a complete partition of
L(α) ∩ L(β) using all possible trees γ such that α, β D γ. For this purpose, we use the
following pseudo-code subroutines.
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1 -- | Given X α1 . . . αm and X β1 . . . βm computes
2 -- the family {γ1, . . . , γm} of tree meshes.
3 mesh :: [Tree] -> [Tree] -> [[Tree]]
4 mesh (x : xs) (y : ys)
5 | x `rew` y = [y] : mesh xs ys -- case when x D y
6 | y `rew` x = [x] : mesh xs ys -- case when y D x
7 | otherwise = meshSet x y : mesh xs ys -- case when x ‖ y
8 mesh [] [] = []

The function Mesh, when given two similar productions α = Xα1 . . . αm and β =
Xβ1 . . . βm, constructs a family {γi}mi=1 where each γi depends on the comparison of cor-
responding arguments. In the case when x rewrites to y (denoted as x `rew` y in the
pseudo-code) the singleton {y} is constructed. Similarly, when y D x, the singleton {x}
is constructed. Otherwise, when x and y are both non-rewritable, γi is computed using
the MeshSet subroutine.

1 -- | Returns the mesh set of given trees.
2 meshSet :: Tree -> Tree -> [Tree]
3 meshSet (X a_1 ... a_m) (X b_1 ... b_m) =
4 cartesian X [mesh a_i b_i | i <- [1..m]]
5 meshSet (R k) b @ (X b_1 ... b_m) =
6 unionMap (\p -> meshSet p b) (productions $ R k)
7 meshSet b @ (X b_1 ... b_m) (R k) =
8 unionMap (\p -> meshSet b p) (productions $ R k)
9 meshSet _ _ = []

When given two similar trees α = Xα1 . . . αm and β = Xβ1 . . . βm, MeshSet com-
putes meshes γ1, . . . , γm of corresponding arguments αi and βi using the subroutine Mesh.
Next, argument meshes {γi}mi=1 are used to construct meshes for α and β, using the sub-
routine Cartesian which computes the Cartesian product {X} × γ1 × · · · × γm using
term application. In the case when one of MeshSet’s argument is a reduction grammar
Rk and the other α is complex, MeshSet computes recursively mesh sets of α and each
production δ ∈ Rk, outputting their set-theoretic union. In any other case, MeshSet
returns the empty set.

Example 4.5. Let α = KCR0S and β = KS(SR0C)S. Consider MeshSet(α, β). Both
α and β are similar and complex, hence MeshSet proceeds directly to construct mesh
sets of corresponding arguments of α and β. Since C D S, we get γ1 = {S}. Then,
as both R0 and SR0C are non-rewritable, γ2 = MeshSet(R0, SR0C). It follows that
MeshSet(R0, SR0C) is equal to

⋃
δ∈R0

MeshSet(δ, SR0C). Further inspection reveals
that MeshSet(R0, SR0C) = {SR0R0} and thus γ2 = {SR0R0}. Finally, γ3 = {S} as S
rewrites trivially to itself. Since each γi is a singleton, it follows that

MeshSet(α, β) = {KS(SR0R0)S} . (4.4)

We leave the analysis of MeshSet until we fully define the construction of reduction
grammars (Rn)n∈N.
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Rewriting Set

Consider our previous example of q = Xx1 . . . xkz(yz) ∈ L(α) where α = Xα1 . . . αkγδ
such that both z ∈ L(γ) and yz ∈ L(δ). In order to capture terms reducing to α
via an S-redex, we need to find all pairs of trees η, ζ such that γ D ζ and δ D η ζ.
Since such pairs of trees follow exactly the structure of z(yz) we can use them to define
the set S-Expansions(α). And so, to find such rewriting pairs, we use the following
RewritingSet pseudo-code subroutine.

1 -- | Given α and β computes their rewriting set.
2 rewritingSet :: Tree -> Tree -> [Tree]
3 rewritingSet a S = []
4 rewritingSet a K = []
5 rewritingSet a C = [C a]
6 rewritingSet a (R k) = unionMap
7 (\p -> rewritingSet a p) (productions $ R k)
8 rewritingSet a (X b_1 ... b_m)
9 | a `rew` b_m => [X b_1 ... b_m]

10 | b_m `rew` a => [X b_1 ... b_{m-1} a]
11 | otherwise =>
12 cartesian (X b_1 ... b_{m-1}) [meshSet a b_m]

The outcome of RewritingSet(α, β) depends on β’s structure. If β is a primit-
ive combinator S or K, RewritingSet returns the empty set. If β = C, a singleton
{Cα} is returned. When β = Rk for some k ∈ N, RewritingSet computes recurs-
ively the rewriting sets of α and γ ∈ Rk, outputting their set-theoretic union. Oth-
erwise when β = Xβ1 . . . βm, RewritingSet determines whether α BC βm. If α D
βm, a singleton {Xβ1, . . . , βm} is returned. Conversely, in the case of βm D α, Re-
writingSet returns {Xβ1, . . . , βm−1α}. Finally if α and βm are non-rewritable, Re-
writingSet invokes the Cartesian subroutine computing the Cartesian product of
{Xβ1, . . . , βm−1}×MeshSet(α, βm) using term application, passing afterwards its result
as the computed rewriting set.

Example 4.6. Let us consider the rewriting set RewritingSet(S,R0). Since β = R0,
we know that RewritingSet(S,R0) =

⋃
γ∈R0

RewritingSet(S, γ). It follows there-
fore that in order to compute RewritingSet(S,R0), we have to consider rewriting sets
involving productions of R0. Note that both productions S and K do not contribute new
trees. It remains to consider productions SR0, KR0 and SR0R0. Evidently, each of them
is complex and has R0 as its final argument. Hence, their corresponding rewriting sets
are SS, KS and SR0S, respectively. And so, we obtain that

RewritingSet(S,R0) = {SS,KS, SR0S} . (4.5)

Similarly to the case of MeshSet, we postpone the analysis until we define the con-
struction of (Rn)n∈N.
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Equipped with the notion of mesh and rewriting sets, we are ready to define the set
of S-Expansions. And so, let α = Xα1 . . . αm where m ≥ 0. The set S-Expansions(α)
is defined as {

S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm | k ∈ {0, . . . ,m− 2}
}

(4.6)

where (ϕlϕr) ∈ RewritingSet(αk+1, αk+2). We use the following subroutine computing
the set of S-Expansions for a given α.

1 -- | Returns S-Expansions of the given production.
2 sExpansions :: Tree -> [Tree]
3 sExpansions p = case p of
4 (K a_1 ... a_m) -> sExpansions' K [a_1,...,a_m]
5 (S a_1 ... a_m) -> sExpansions' S [a_1,...,a_m]
6 where
7 sExpansions' _ [] = []
8 sExpansions' _ [_] = []
9 sExpansions' h [x_1,x_2,...,x_k] =

10 map (\(App l r) -> S h l r x_3 ... x_m)
11 (rewritingSet x_1 x_2) ++
12 sExpansions' (App h x_1) [x_2,...,x_m]

Proposition 4.7. Let x ∈ L(S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm). If x →w y, then y ∈
L(Xα1 . . . αkϕr(ϕl ϕr)αk+3 . . . αm).

Proof. Let x = S(Xx1 . . . xk)wzxk+3 . . . xm. Let us consider its immediate reduct y =
Xx1 . . . xkz(w z)xk+3 . . . xm. Clearly, xi ∈ L(αi) for i in proper range. Moreover, both
w ∈ L(ϕl) and z ∈ L(ϕr), which finishes the proof.

4.2.3 Algorithm pseudo-code

With the complete and formal definitions of both S- and K-Expansions we are ready to
give the main algorithm Reduction Grammar, which for given n ∈ N constructs the
grammar Rn.

1 -- | Given n ∈ N constructs Rn.
2 reductionGrammar :: Integer -> [Tree]
3 reductionGrammar 0 = [S, K, S (R 0), K (R 0), S (R 0) (R 0)]
4 reductionGrammar n = [S (R n), K (R n)]
5 ++ [S (R $ n-i) R_i | i <- [0..n]]
6 ++ [K (R $ n-1) C]
7 ++ concatMap kExpansions (reductionGrammar $ n-1)
8 ++ concatMap sExpansions (reductionGrammar $ n-1)

The grammar R0 is given explicitly. Each next grammar Rn consists of five groups of
productions where the first two define all the short ones and the last three define the long
ones:
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(i) { SRn, KRn };

(ii) { SRn−iRi | i = 0 . . . n};

(iii) { KRn−iC | i = 0 . . . n };

(iv)
⋃
{ K-Expansions(α) | α ∈ Rn−1 };

(v)
⋃
{ S-Expansions(α) | α ∈ Rn−1 }.

Example 4.8. Following the construction algorithm, the grammar R1, defining the set
of SK-combinators reducing in a single step to their normal forms, is defined as follows:

R1 = SR1 | KR1 | SR0R1 | SR1R0 | KR0C | KSCR0 | KKCR0 | (4.7)
KSCR0R0 | K(SR0)CR0 | SSSR0 | SSKR0 | SS(SR0)R0 .

Let us consider α = SSSR0. Since α ∈ S-Expansions(SR0R0) we get α ∈ R1. Note
that S-Expansions(α) contains β1 = S(SS)SS and β2 = S(SS)KS. It follows that
β1, β2 ∈ R2.

4.3 Analysis

Most of our proofs in the following sections are using inductive reasoning on the underlying
tree structure. Alas, in certain cases most natural candidates for induction such as tree
size fail due to self-referencing productions, i.e. productions of Rn which explicitly use the
non-terminal symbol Rn. In order to remedy such problems, we introduce the following
notion of tree potential.

Definition 4.9 (Tree potential). Let α be a tree. Then, the tree potential π(α) of α is
defined inductively as follows:

(i) π(S) = π(K) = π(C) = 0;

(ii) π(Xα1 . . . αm) = m+
∑m

i=1 π(αi);

(iii) π(Rn) = 1 + max
γ∈Φ(Rn)

π(γ).

where Φ(Rn) denotes the set of productions of Rn which do not use the non-terminal
symbol Rn. Such a statement of π(Rn) is well-defined due to the fact that R0 is finite
and the algorithm constructing Rn+1 out of R0, . . . , Rn does not use unbounded recursion
(see Proposition 4.10).

Moreover, note that such a definition of potential is almost identical to the notion of
tree size. The potential of α is the sum of α’s size and the weighted sum of all non-terminal
grammar symbols occurring in α.

Immediately from the definition we get π(R0) = 1. Furthermore, π(Rn+1) > π(Rn) for
any n ∈ N. Indeed, let α ∈ Rn be the witness of Rn’s potential. Now, (Kα C) ∈ Φ(Rn+1)
and so Rn+1 has necessarily greater potential. Moreover, π(α) > π(β) if β is a subtree of
α. It follows that the notion of tree potential is a well-suited candidate for the intuitive
tree complexity measure.
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4.3.1 Soundness

In this section we are interested in the soundness of Reduction Grammar. In par-
ticular, we prove that it is computable, terminates on all legal inputs and, for given n,
constructs a reduction grammar Rn generating only terms that require exactly n steps to
normalise. We start with showing that the rewriting relation is decidable.

Proposition 4.10. It is decidable to check whether α D β.

Proof. Induction over n = π(α) + π(β). If α = X, then the only tree α rewrites to is X.
On the other hand, if α = C, then α rewrites to any β. And so, it is decidable to check
whether α D β in case n = 0. Now, let us assume that n > 0. We have two remaining
cases to consider:

(i) If α = Xα1 . . . αm, then α D β if and only if β = Xβ1 . . . βm and αi D βi for all
i ∈ {1, . . . ,m}. Since the total potential of π(αi) + π(βi) is less than n, we can
use the induction hypothesis to decide whether all arguments of α rewrite to the
respective arguments of β. It follows that we can decide whether α D β;

(ii) If α = Rk, then clearly α D β if and only if β = Rk or there exists a production
γ ∈ Rk such that γ D β. Let us assume that γ is a production of Rk. Note that
if γ D β, then γ and β are similar. And so, since similarity is decidable, we can
rephrase our previous observation as α D β if and only if β = Rk or there exists a
production γ ∈ Rk such that γ is similar to β and γ D β. Checking whether β = Rk

is trivial, so let us assume the other option and start with the case when γ is a short
production referencing Rk.

If γ = XRk is similar to β = Xβ1, we know that γ D β if and only if Rk D β1. Since
π(Rk) + π(β1) < n, we know that checking whether Rk D β1 is decidable, hence so
is γ D β.

Let us assume w.l.o.g. that γ = SRkR0. Hence, β = Sβ1β2. And so, γ D β if
and only if Rk D β1 and R0 D β2. Notice that π(Rk) + π(β1) < n as well as
π(R0) + π(β2) < n. Using the induction hypothesis to both, we get that checking
Rk D β1 and R0 D β2 is decidable, hence so is α D β.

Finally, if γ is a long production we can rewrite it as γ = Xγ1 . . . γm, and so reduce
this case to the previous one when both trees are complex, as π(γ) is necessarily
smaller than n.

Proposition 4.11. Let α, β be two trees. Then, both α D γ and β D γ for any γ ∈
MeshSet(α, β).

Proof. Induction over n = π(α) + π(β). Let M = MeshSet(α, β). Clearly, it suffices to
consider such α, β that M 6= ∅.

Let us assume that both α = Xα1 . . . αm and β = Xβ1 . . . βm. If αi BC βi for all
i ∈ {1, . . . ,m}, then M consists of a single tree γ = Xγ1 . . . γm for which αi, βi D γi.
Evidently, our claim holds. Suppose that there exists an i ∈ {1, . . . ,m} such that αi ‖ βi.
Since π(αi) +π(βi) < n, we can apply the induction hypothesis to MeshSet(αi, βi). The
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set M ′ = MeshSet(αi, βi) cannot be empty and so let δi be an arbitrary mesh in M ′.
We know that αi, βi D δi. And so, if we consider an arbitrary γ = Xγi . . . γm ∈ M , we
get αi, βi D γi for all i ∈ {1, . . . ,m}, which implies our claim.

What remains is to consider the case when either α = Rk and β is complex or,
symmetrically, β = Rk and α is complex. Let us assume w.l.o.g. the former case. From
the definition, MeshSet(Rk, β) depends on the union of MeshSet(γ, β) for γ ∈ Rk.
Clearly, Rk rewrites to any of its productions. Let γ ∈ Rk be a production referencing
Rk. We have to consider two cases based on the structure of γ:

(i) Let γ = XRk. Then, π(γ) = π(Rk) + 1 and so we cannot use the induction
hypothesis to MeshSet(γ, β) directly. Note however, that we can assume that
β = Xβ1, since otherwise MeshSet(γ, β) would be empty. Therefore, we know
that MeshSet(Rk, β1) 6= ∅ to which we can now use the induction hypothesis, as
π(Rk) + π(β1) < n. Immediately, we get that Rk, β D γ;

(ii) W.l.o.g. let γ = SRkR0. Then, π(γ) = 3 +π(Rk). Again, we cannot directly use the
induction hypothesis. Note however, that we can assume that β = Sβ1β2. And so
we get π(Rk) + π(β1) < n and π(R0) + π(β2) < n. Using the induction hypothesis
to both parts we conclude that Rk, β D γ in this case as well.

To finish the proof we need to show that our claim holds for all γ ∈ Rk which do not
reference Rk. Indeed, any such production has necessarily smaller potential than Rk, and
so, we can use the induction hypothesis directly to the resulting mesh set. Evidently, our
claim holds.

In other words, MeshSet(α, β) is in fact a set of meshes, i.e. trees generating a joint
portion of L(α) and L(β). Note, that along the lines of proving the above proposition,
we have also showed that indeed MeshSet(α, β) terminates on all legal inputs, as the
number of recursive calls cannot exceed 2(π(α) + π(β)); in the worst case, every second
recursive call decreases the total potential sum of its inputs.

Proposition 4.12. Let α, β be two trees. Then, α D ϕr and β D ϕlϕr for any ϕlϕr ∈
RewritingSet(α, β).

Proof. We can assume that RewritingSet(α, β) 6= ∅, as otherwise our claim trivially
holds. Let ϕlϕr ∈ RewritingSet(α, β). Based on the structure of β, we have to three
cases to consider:

(i) If β = C, then ϕlϕr = Cα. Immediately, α D α and C D C α;

(ii) If β = Xβ1 . . . βm, then we have again exactly three possibilities. Both cases when
α BC βm are trivial, so let us assume that α ‖ βm. It follows that there exists such
a γ ∈ MeshSet(α, βm) that ϕlϕr = Xβ1 . . . βm−1γ. Due to Proposition 4.11, we
know that α, βm D γ and so directly that α D ϕr and β D ϕlϕr;

(iii) Finally, suppose that β = Rn. Then, there exists a production γ ∈ Rn such that
ϕlϕr ∈ RewritingSet(α, γ). Note however, that in this situation γ = Xγ1 . . . γm
and so we can reduce this case to the already considered case above.
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Now we are ready to give the anticipated soundness theorem.

Theorem 4.13 (Soundness). If x ∈ L(Rn), then x reduces in n steps.

Proof. Induction over pairs (n,m) where m denotes the length of a minimal, in terms
of length, derivation Σ of x ∈ L(Rn). Let n = 0 and so x ∈ L(R0). If m = 1, then
x ∈ {S,K} hence x is already in normal form. Suppose that m > 1. Clearly, x 6∈ {S,K}.
Let R0 → α be the first production rule used in derivation Σ. Using the induction
hypothesis to the remainder of the derivation, we know that x does not contain any
nested redexes. Moreover, α avoids any head redexes and so we get that x is in normal
form.

Let n > 0. We have to consider several cases based on the choice of the first production
rule Rn → α used in the derivation Σ:

(i) α = SRn or α = KRn. Using the induction hypothesis we know that x = Xy where
y reduces in n steps. Naturally, so does x;

(ii) α = SRn−iRi for some i ∈ {0, . . . , n}. Then, x = Syz where y ∈ L(Rn−i) and
z ∈ L(Ri). Note that both their derivations are in fact shorter than the derivation
of x and thus applying the induction hypothesis to both y and z we know that
they reduce in n− i and i steps, respectively. Following the normal-order reduction
strategy, we note that y and z reduce sequentially in x. Since x does not contain a
head redex itself, we reduce it in total of n reductions;

(iii) α = KRn−1C. Directly from the induction hypothesis we know that x = Kyz where
y reduces in n− 1 steps. And so x→w y, implying that x reduces in n steps;

(iv) α = K(Xα1 . . . αk)Cαk+1 . . . αm. Let x ∈ L(α). Clearly, x has a head redex and so
let x →w y. Using Proposition 4.4, we know that y ∈ L(Xα1 . . . αm). Moreover,
by the construction of Rn we get α ∈ K-Expansions(Xα1 . . . αm) and therefore
y ∈ L(Rn−1). It follows that y reduces in n− 1 steps and so x in n steps;

(v) α = S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm. Let x ∈ L(α). Clearly, x has a head redex and so
let x→w y. Due to Proposition 4.7 we get that y ∈ L(Xα1 . . . αkϕr(ϕl ϕr)αk+3 . . . αm).
In order to show that x reduces in n steps it suffices to show that y ∈ L(Rn−1). Let
us consider β such that α ∈ S-Expansions(β). From the structure of α we can
rewrite it as β = Xα1 . . . αkαk+1αk+2 . . . αm. Moreover, from Proposition 4.12 we
know that αk+1 D ϕr and αk+2 D ϕl ϕr. Clearly, y ∈ L(β), which finishes the proof.

Combining the above result with the fact that each normalising combinatory logic term
reduces in a determined number of normal-order reduction steps, gives us the following
corollary.

Corollary 4.14. If L(Rn) ∩ L(Rm) 6= ∅, then n = m.
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4.3.2 Completeness

In this section we are interested in the completeness of Reduction Grammar. Spe-
cifically, we show that every term normalising in exactly n steps is generated by Rn.

W start with some auxiliary lemmas showing the completeness of MeshSet and, in
consequence, RewritingSet.

Lemma 4.15. Let α, β be two non-rewritable trees and x be a term. Then, x ∈ L(α) ∩
L(β) if and only if there exists a mesh γ ∈MeshSet(α, β) such that x ∈ L(γ).

Proof. It suffices to show the sufficiency part, the necessity is clear from Proposition 4.11.
We show this result using induction over the size |x| of x. Let x ∈ L(α)∩L(β). Let us start
with noticing that |α|+|β| > 0. Moreover, there are only two cases where x ∈ L(α)∩L(β),
i.e. when either α = Xα1 . . . αm and β = Xβ1 . . . βm or when exactly one of them is equal
to some Rn and the other is complex. And so, let us consider these cases separately:

(i) Suppose that α = Xα1 . . . αm and β = Xβ1 . . . βm. It follows that we can rewrite x
as Xx1 . . . xm such that xi ∈ L(αi)∩L(βi). Clearly, if all αi BC βi, then there exists
a mesh γ such that x ∈ L(γ). Let us assume that some αi and βi are non-rewritable.
Then, using the induction hypothesis we find a mesh γi ∈ MeshSet(αi, βi) such
that xi ∈ L(γi). Immediately, we get that there exists a mesh in MeshSet(α, β)
which generates x;

(ii) Let us assume w.l.o.g. that α = Rn and β = Xβ1 . . . βm. Since x ∈ L(Rn), there
must be such a production γ ∈ Rn that x ∈ L(γ). Although the size of x does
not decrease, note that we can reduce this case to the one considered above since
both γ and β are complex. Clearly, it follows that we can find a suiting mesh
δ ∈ MeshSet(γ, β) such that x ∈ L(δ). Immediately, we get δ ∈ MeshSet(α, β)
which finishes the proof.

Lemma 4.16. Let α, β be two trees and x, yx be two terms. Then, x ∈ L(α) and
yx ∈ L(β) if and only if there exists such a ϕlϕr ∈ RewritingSet(α, β) that x ∈ L(ϕr)
and yx ∈ L(ϕlϕr).

Proof. Due to Proposition 4.12 the necessity is clear. What remains is to show the
sufficiency part. Let x ∈ L(α) and yx ∈ L(β). Consider the structure of β. If β = C,
then Cα ∈ RewritingSet(α, β) and so ϕl = C, ϕr = α. Clearly, our claim holds. Now,
consider the case when β = Xβ1 . . . βm. Based on the rewritability of α and βm we
distinguish three subcases:

(i) If α D βm, then Xβ1 . . . βm ∈ RewritingSet(α, β). Since yx ∈ L(β), we get
x ∈ L(βm) and in consequence x ∈ L(ϕr);

(ii) If βm D α, then Xβ1 . . . βm−1α ∈ RewritingSet(α, β). Since βm D α, we know
that L(α) ⊆ L(βm) and so yx ∈ L(Xβ1 . . . βm−1α);

(iii) If α ‖ βm, then we know that x ∈ L(α)∩L(βm). If not, then yx could not be a term
of L(β). And so, using Lemma 4.15 we find a mesh γ ∈MeshSet(α, βm) such that
x ∈ L(γ). We know that Xβ1 . . . βm−1γ ∈ RewritingSet(α, β). Clearly, it is the
tree we were looking for.
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It remains to consider the case when β = Rk. Note however, that it can be reduced to
the case when β = Xβ1 . . . βm. Indeed, since x ∈ L(Rk), then there exists a production
γ ∈ Rk such that x ∈ L(γ). From the previous arguments we know that we can find a
tree satisfying our claim.

Using the above completeness results for MeshSet and RewritingSet, we are ready
to give the anticipated completeness result of (Rn)n∈N.

Theorem 4.17 (Completeness). If x reduces in n steps, then x ∈ L(Rn).

Proof. Induction over pairs (n, s) where s denotes the size of x. The base case n = 0 is
clear due to the completeness of R0. Let n > 0.

Let us start with considering short terms. Let x = Xy be a term of size s. Since x
has no head redex, y must reduce in n steps as well. Now, we can apply the induction
hypothesis to y and deduce that y ∈ L(Rn). It follows that x ∈ L(XRn). Clearly, XRn

is a production of Rn and so x ∈ L(Rn). Now, assume that x = Syz. Since x reduces
in n steps and does not contain a head redex, there exists such an i ∈ {0, . . . , n} that y
reduces in i steps and z reduces in n− i steps. Applying the induction hypothesis to both
y and z, we get that y ∈ L(Ri) whereas z ∈ L(Rn−i). Immediately, we get that x ∈ L(Rn)
as SRiRn−i ∈ Rn.

What remains is to consider long terms. Let x = Kx1x2. Note that x1 must reduce in
n−1 steps, as x→w x1. And so, from the induction hypothesis we get that x1 ∈ L(Rn−1).
Now we have x ∈ L(KRn−1C) and hence x ∈ L(Rn) as KRn−1C is a production of Rn.

Now, let x = Kx1 . . . xm for m ≥ 3. Since x has a head redex, we know that x→w y =
x1x3 . . . xm, which itself reduces in n−1 steps. Let us rewrite y asXy1 . . . ykx3 . . . xm where
x1 = Xy1 . . . yk. We know that there exists a production α ∈ Rn−1 such that y ∈ L(α).
Let α = Xα1 . . . αkα3 . . . αm. Clearly, there exists a β = K(Xα1 . . . αk)Cα3 . . . αm ∈
K-Expansions(α). We claim that x ∈ L(β). Indeed, y ∈ L(α) implies that yi ∈ L(αi)
and xj ∈ L(αj) for any i and j in proper ranges. Since x2 ∈ L(C), we conclude that
x ∈ L(β) and hence x ∈ L(Rn).

Let x = Sx1 . . . xm for m ≥ 3. Since x has a head redex x→w y = x1x3(x2x3)x4 . . . xm
which reduces in n − 1 steps. Again, let us rewrite y as Xy1 . . . ykx3(x2x3)x4 . . . xm
where x1 = Xy1 . . . yk. Now, since y ∈ L(Rn−1), there must exist a production α =
Xα1 . . . αkα3γα4 . . . αm ∈ Rn−1 such that y ∈ L(α). We claim that there exists a pro-
duction β ∈ S-Expansions(α) such that x ∈ L(Rn). If so, the proof would be com-
plete. Notice that x3 ∈ L(α3) and x2x3 ∈ L(γ). Using Lemma 4.16 we know that
there exists a tree ϕlϕr ∈ RewritingSet(α3, γ) such that x3 ∈ L(ϕr) and (x2x3) ∈
L(ϕlϕr). And so y ∈ L(Xα1 . . . αkϕr(ϕlϕr)α4 . . . αm). Moreover, due to the fact that
ϕlϕr ∈ RewritingSet(α3, γ), we know that the tree β = S(Xα1 . . . αk)ϕlϕrα4 . . . αm ∈
S-Expansions(α) and so also β ∈ Rn. Since x2 ∈ L(ϕl), we get that x ∈ L(β).

4.3.3 Unambiguity

In this section we show that reduction grammars are in fact unambiguous, i.e. every term
x ∈ L(Rn) has exactly one derivation. Due to the mutual recursive nature of Mesh-
Set, RewritingSet and ReductionGrammar, we split the proof into two separate
parts. In the following lemma, we show that MeshSet returns unambiguous meshes
under the assumption that R0, . . . , Rn up to some n are themselves unambiguous. In
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the corresponding theorem we use inductive reasoning which supplies the aforementioned
assumption and thus, as a consequence, allows us to prove the main result.

Lemma 4.18. Let α, β be two trees such that γ, γ ∈ MeshSet(α, β) where in addition
ρ(α), ρ(β) ≤ r + 1. If R0, . . . , Rr are unambiguous and L(γ) ∩ L(γ) 6= ∅, then γ = γ.

Proof. Induction over n = π(α) + π(β). Let x ∈ L(γ) ∩ L(γ). We can assume that
|MeshSet(α, β)| is greater than 1 as the case for |MeshSet(α, β)| = 1 is trivial. In
consequence, the base case n = 0 is clear as the resulting MeshSet for two trees of
potential 0 has to be necessarily empty. Hence, we have to consider two cases based on
the structure of α and β:

(i) Let α = Xα1 . . . αm and β = Xβ1 . . . βm. Clearly, x is in form of x = Xx1 . . . xm. Let
αi ‖ βi be an arbitrary non-rewritable pair of arguments in α, β. It follows that xi ∈
L(αi)∩L(βi) and so, due to Lemma 4.15, there exists a mesh δ ∈MeshSet(αi, βi)
such that xi ∈ L(δ). LetMi = MeshSet(αi, βi). Since π(αi)+π(βi) < n we can use
the induction hypothesis to Mi and immediately conclude that δ is the only mesh
in Mi generating xi. And so, we know that γ and γ are equal on the non-rewritable
arguments of α, β. Note that if αi BC βi, then both contribute a single mesh at
position i. Immediately, we get that both γ and γ are also equal on the rewritable
arguments of α and β, hence finally γ = γ;

(ii) W.l.o.g. let α = Rk and β = Xβ1 . . . βm. Clearly, as ρ(α) ≤ r + 1, we know
that Rk is unambiguous. From the definition of MeshSet there exist productions
δ, δ ∈ Rk such that γ ∈ MeshSet(δ, β) and γ ∈ MeshSet(δ, β). We claim that
γ = γ as otherwise δ, δ would generate a common term. Suppose that γ 6= γ.
From Lemma 4.15 we know that L(γ) ⊆ L(δ) and L(γ) ⊆ L(δ). Since x ∈ L(γ) ∩
L(γ), we get that x ∈ L(δ) ∩ L(δ) and therefore a contradiction with the fact that
Rk is unambiguous. It follows that γ = γ, which finishes the proof.

Theorem 4.19 (Unambiguity). Let α, β ∈ Rn. If L(α) ∩ L(β) 6= ∅, then α = β.

Proof. Induction over n. Let x ∈ L(α) ∩ L(β). Note that if x ∈ L(α) ∩ L(β), then both
α, β must be similar. We can therefore focus on similar productions of Rn. For that
reason, we immediately notice that R0 satisfies our claim.

Let n > 0. Since Rn does not contain combinators as productions, we can rewrite
both α as Xα1 . . . αm and β as Xβ1 . . . βm. Let us consider several cases based on their
common structure:

(i) Let X = K. If m = 1, then α and β are equal as there is exactly one short
K-production inRn. Ifm = 2, then again α = β, since there is a uniqueK-production
KRn−1C of length two in Rn. If m > 2, then both are K-Expansions of some pro-
ductions in Rn−1. And so

α = K(Xα1 . . . αk)Cα3 . . . αm ∈ K-Expansions(γ) , (4.8)
β = K(Xβ1 . . . βk)Cβ3 . . . βm ∈ K-Expansions(δ) (4.9)
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where

γ = Xα1 . . . αkα3 . . . αm , (4.10)
δ = Xβ1 . . . βkβ3 . . . βm . (4.11)

Since x ∈ L(α) ∩ L(β), we can assume that x is in form of K(Xy1 . . . yk)x2x3 . . . xm
where yi ∈ L(αi) ∩ L(βi) and xj ∈ L(αj) ∩ L(βj). It follows that we can use the
induction hypothesis to γ, δ ∈ Rn−1 obtaining αi = βi and αj = βj. Immediately,
we get α = β;

(ii) Let X = S. Ifm = 1, then α and β are equal due to the fact that there is exactly one
S-production of length one inRn. Ifm = 2, then α, β are in form of α = SRiRn−i and
β = SRjRn−j. Hence, x = Sx1x2 for some terms x1, x2. Since x1 ∈ L(Ri) ∩ L(Rj)
and x2 ∈ L(Rn−i) ∩ L(Rn−j), we know that i = j due to Corollary 4.14 and thus
α = β. It remains to consider long S-productions. Let

α = S(Xα1 . . . αk)ϕlϕrα4 . . . αm ∈ S-Expansions(γ) , (4.12)
β = S(Xβ1 . . . βk)ϕlϕrβ4 . . . βm ∈ S-Expansions(δ) (4.13)

where

γ = Xα1 . . . αkα2α3α4 . . . αm , (4.14)
δ = Xβ1 . . . βkβ2β3β4 . . . βm . (4.15)

It follows that we can rewrite x as S(Xy1 . . . yk)wzx4 . . . xm. Let us focus on the
reduct x →w y = Xy1 . . . ykz(wz)x4 . . . xm. Evidently, y ∈ L(γ) ∩ L(δ) and so
according to the induction hypothesis we know that γ = δ, in particular α2 = β2

and α3 = β3. Hence, both ϕlϕr and ϕlϕr are elements of the same RewritingSet.
If we could guarantee that ϕlϕr = ϕlϕr, then immediately α = β and the proof is
finished. From the construction of the RewritingSet we have two cases left to
consider:

(i) If α3 = Xγ1 . . . γm, then both ϕlϕr and ϕlϕr are either in form ofXγ1 . . . γm−1 ϕr
or Xγ1 . . . γm−1 ϕr. It follows that ϕl = ϕl. It remains to show that ϕr = ϕr.
Note that ρ(α2), ρ(α3) ≤ n since both γ, δ ∈ Rn−1. Moreover, from the induc-
tion hypothesis we know that R0, . . . , Rn−1 are unambiguous. And so, since
z ∈ L(ϕr) ∩ L(ϕr), we can use Lemma 4.18 to conclude that ϕr = ϕr;

(ii) If α3 = Rk, then necessarily there exist such productions η, η ∈ Rk that
ϕlϕr ∈ RewritingSet(α2, η) whereas ϕlϕr ∈ RewritingSet(α2, η). Due
to Proposition 4.12, we know that L(ϕlϕr) ⊆ L(η) and L(ϕlϕr) ⊆ L(η). It
implies that wz ∈ L(η) ∩ L(η), however, since k < n, we know from the in-
duction hypothesis that Rk is unambiguous. Hence η = η. Finally, it means
that we can reduce this case to one of the previous cases when α3 is complex,
concluding that ϕlϕr = ϕlϕr.
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4.3.4 Generating functions

Fix an arbitrary normal-order reduction grammar Rn. Let us consider the counting se-
quence (rn,k)k∈N where rn,k denotes the number of SK-combinators of size k reducing in
n normal-order reduction steps. Suppose we associate with it a formal power series Rn(z)
defined as

Rn(z) =
∞∑
k=0

rn,k z
k . (4.16)

In the following theorem we present a recursive method of computing the closed-form
solution (i.e. finite representation using elementary functions) of Rn(z) using the regular
tree grammars R0, . . . , Rn and the inductive use of the symbolic method (see Section 2.1).

Let us start with the following proposition.

Proposition 4.20 (Bendkowski, Grygiel and Zaionc [BGZ15]). The generating function
C(z) associated with the set of all SK-combinators and its corresponding dominating
singularity ρC are given by

C(z) =
1−
√

1− 8z

2z
and ρC =

1

8
. (4.17)

Furthermore, the generating function R0(z) enumerating SK-combinators in normal
form and its corresponding dominating singularity ρ0 are given by

R0(z) =
1− 2z −

√
1− 4z − 4z2

2z2
and ρ0 =

1

2

(√
2− 1

)
≈ 0.207107 . (4.18)

Theorem 4.21 (Generating function construction). For each n ≥ 0, the generating
function Rn(z) corresponding to the sequence (rn,k)k∈N has a computable (in terms of
elementary functions) closed-form solution.

Proof. Induction over n. Certainly, the base case n = 0 is clear due to (4.18).
Suppose that n ≥ 1. Recall that in its construction, Rn might depend on previous

reduction grammars R0, . . . , Rn−1, the set C of all SK-combinators and itself, via self-
referencing productions. Due to Theorem 4.19, Rn is unambiguous and so we can express
its generating function Rn(z) as the unique solution of

Rn(z) =
∑
α∈Rn

zk(α)C(z)c(α)
n∏
i=0

Ri(z)ri(α) (4.19)

where k(α), c(α) and ri(α) denote the number of applications, the number of non-terminal
symbols C and the number of non-terminal symbols Ri in α, respectively.

Note that Rn has exactly four self-referencing productions, i.e. SRn, KRn, SR0Rn and
SRnR0. It means that by converting them into appropriate functional equations, we can
further rewrite (4.19) as

Rn(z) = 2zRn(z) + 2z2R0(z)Rn(z) +
∑

α∈Φ(Rn)

zk(α)C(z)c(α)
n−1∏
i=0

Ri(z)ri(α) (4.20)
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where Φ(Rn) denotes the set of productions α ∈ Rn which do not reference Rn. By the
induction hypothesis, we can compute the closed-form solutions for R0(z), . . . , Rn−1(z)
turning (4.20) into a linear equation in Rn(z). Simplifying (4.18) for R0(z) we derive the
final closed-form solution

Rn(z) =
1√

1− 4z − 4z2

∑
α∈Φ(Rn)

zk(α)C(z)c(α)
n−1∏
i=0

Ri(z)ri(α) . (4.21)

4.3.5 Other applications

In this section we highlight some interesting consequences of the existence of normal-
order reduction grammars. In particular, we prove that terms reducing in n steps have
necessarily bounded length. Moreover, we show that the problem of deciding whether a
given term reduces in n steps can be done in memory independent of the size of the term.

Proposition 4.22. If α ∈ Rn, then α has length at most 2n+ 2.

Proof. Induction over n. The base case n = 0 is clear from the shape of R0. Fix n > 0. Let
us consider long productions in Rn. If β is a K-Expansion of some Xα1 . . . αm ∈ Rn−1,
then

β = K(Xα1 . . . αk)Cαk+1 . . . αm for 0 ≤ k ≤ m− 1 . (4.22)

In particular, the longest K-Expansion of Xα1 . . . αm is in form of

β = KXα1 . . . αkCαk+1 . . . αm . (4.23)

Note that β is of length m+ 2 and so by the induction hypothesis at most 2n+ 2.
Now, let us consider the case when β is a S-Expansion of some Xα1 . . . αm ∈ Rn−1.

Then,
β = S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm for 0 ≤ k ≤ m− 2 (4.24)

where in addition (ϕl ϕr) ∈ RewritingSet(αk+1, αk+2). Again, the longest S-Expansion
of Xα1 . . . αm is in form of

β = SXα1 . . . αkϕlϕrαk+3 . . . αm . (4.25)

It follows that β is of length at most m+ 1 and so also at most 2n+ 1.

In other words, terms reducing in n steps cannot be too long as their length is tightly
bounded by 2n+ 2. Now, let us consider the following two problems:

Problem: fixed-step-reducibility
Input: A combinatory logic term x ∈ L(C).
Output: yes if and only if x reduces in n steps.

Problem: reducibility
Input: A combinatory logic term x ∈ L(C) and a number n ∈ N.
Output: yes if and only if x reduces in n steps.
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Let us start with the fixed-step-reducibility problem. Since n in not a part of the
input, we can compute Rn in constant time and memory. Using Rn we build a bottom-up
tree automaton [Com+07] recognising L(Rn) and use it to check whether x ∈ L(Rn) in
time O(|x|), without using additional memory. On the other hand, the Naive algorithm,
performing up to n normal-order reduction steps, requires O(|x|) time and additional
memory. At each step, the considered term doubles at most in size, as Sxyz →w xz(yz).
In order to find the next redex we spend up to linear time in the current size of x, therefore
both size and time are bounded by

|x|+ 2|x|+ 4|x|+ · · ·+ 2n|x| = |x|
(

1 + 2 + 4 + · · ·+ 2n
)

= |x|
(

2n+1 − 1
)

= O(|x|) . (4.26)

As a natural extension of the above discussion, we get the following corollary.

Corollary 4.23. The reducibility problem is decidable in space depending exclusively
on n, independently of |x|.

4.3.6 Upper bound

In this section we focus on the upper bound on the number |Rn| of productions in Rn. We
show that there exists a primitive recursive function f : N→ N such that |Rn| ≤ f(n).

Following the scheme of the soundness proofs in Section 4.3.1, we construct suitable
upper bounds using the notions of tree potential and degree. In the end of this section,
we show that these values are in fact bounded in each Rn thus giving the desired upper
bound.

Lemma 4.24. Let α, β be two trees of degree at most n such that their total potential
π(α) + π(β) is equal to p. Then, the number of distinct meshes in MeshSet(α, β) is
bounded by |Rn|e p!.

Proof. Induction over the total potential p. Consider the following primitive recursive
function fn : N→ N:

fn(k) =

{
1 if k = 0 ,

(|Rn| · fn(k − 1))k otherwise.
(4.27)

We claim that |MeshSet(α, β)| ≤ fn(p). Note that it suffices to consider such α, β
that |MeshSet(α, β)| > 1 since fn is an increasing function attaining positive values for
any given input. It follows that the base case p = 0 is clear, as if π(α) + π(β) = 0,
then MeshSet(α, β) is necessarily empty. Now, let us assume that p > 0. From the
construction of the common mesh set M of α and β, we can distinguish two cases left to
consider:

(i) Suppose that α = Xα1 . . . αm and β = Xβ1 . . . βm. In order to maximise the size
of M , we can furthermore assume that none of the pairs αi, βi are rewritable. And
so, the total number of meshes in M is equal to the product of all meshes in cor-
responding mesh sets for αi and βi. The degree of αi and βi is still at most n,
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however π(αi) + π(βi) ≤ p − 2. Hence, using the induction hypothesis we get
|MeshSet(αi, βi)| ≤ fn(p− 2). Since both α, β are of length m ≤ p we can further-
more state that

|M | ≤ (fn(p− 2))m ≤ (fn(p− 2))p

≤ (fn(p− 1))p ≤ (|Rn| · fn(p− 1))p

= fn(p) ; (4.28)

(ii) Let us assume w.l.o.g. that α = Ri and β is complex. In order to maximise the total
number of meshes in M , we can moreover assume that all productions γ ∈ Ri are
similar to β and generate disjoint sets of meshes. We claim that MeshSet(γ, β) ≤
fn(p−1). And so, if γ does not reference Ri, then our claim is trivially true. Suppose
that γ is a self-referencing production. If γ = XRi, then β is in form of Xβ1. From
the construction of M , we get that

|MeshSet(γ, β)| = |MeshSet(Ri, β1)| . (4.29)

As π(Ri)+π(β1) ≤ p−1, we can apply the induction hypothesis to MeshSet(Ri, β1)
and immediately obtain |MeshSet(γ, β)| ≤ fn(p − 1). Now, suppose w.l.o.g. that
γ = SRiR0 and hence β = Sβ1β2. Again, from the construction of M we know that

|MeshSet(γ, β)| = |MeshSet(Ri, β1)| · |MeshSet(R0, β2)| . (4.30)

Due to the fact that both π(Ri) + π(β1) ≤ p− 2 and π(R0) + π(β2) ≤ p− 2, we can
use the induction hypothesis and immediately get that

|MeshSet(γ, β)| = |MeshSet(Ri, β1)| · |MeshSet(R0, β2)|
≤ fn(p− 2) fn(p− 2). (4.31)

Note that (fn(p− 2))2 ≤ fn(p−1) for p ≥ 2 and, in consequence, |MeshSet(γ, β)| ≤
fn(p − 1). Indeed, if p = 2, then (fn(p− 2))2 = 1 ≤ fn(1) = |Rn|. Otherwise if
p > 2, then

fn(p− 1) = (|Rn| · fn(p− 2))p−1

=
(
|Rn|p−1(fn(p− 3))p−2)p−1

≥
(
|Rn|p−2(fn(p− 3))p−2)p−1

= (|Rn| · fn(p− 3))(p−1)(p−2) . (4.32)

As 2(p− 2) ≤ (p− 1)(p− 2) for p > 2, we finally obtain

(|Rn| · fn(p− 3))(p−1)(p−2) ≥ (|Rn| · fn(p− 3))2(p−2)

= (fn(p− 2))2 . (4.33)

We know therefore that MeshSet(γ, β) ≤ fn(p− 1) for each γ ∈ Ri. Finally, using
the fact that |Ri| ≤ |Rn|, we get

|M | ≤ |Rn| · fn(p− 1)

≤ (|Rn| · fn(p− 1))p

= fn(p) . (4.34)
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And so, we know that |MeshSet(α, β)| ≤ fn(p). Solving the recurrence for fn(p), using
e.g. Mathematica [Wol15], we obtain the following closed-form expression:

fn(p) = |Rn|e pΓ(p,1) (4.35)

where

Γ(s, x) = (s− 1)! e−x
s−1∑
k=0

xk

k!
(4.36)

is the upper incomplete gamma function (see e.g. [AS72]). Simplifying the above expres-
sion in the case x = 1 and using the fact that

∑s−1
k=0

1
k!
≤ e for arbitrary s, we finally

obtain the anticipated upper bound

fn(p) ≤ |Rn|e p! . (4.37)

Lemma 4.25. Let α, β be two trees of degree at most n such that their total potential
π(α) + π(β) is equal to p. Then, the number of distinct trees in RewritingSet(α, β) is
bounded by |Rn|1+e p!.

Proof. If |RewritingSet(α, β)| ≤ 1, then our claim is trivially true. Let us focus
therefore on the remaining cases when either β = Xβ1 . . . βm and both βm and α are
non-rewritable, or β = Ri.

First, consider the former case. Note that the resulting rewriting set is of equal size
as MeshSet(α, βm). Since π(α) +π(βm) ≤ p− 1, we can use Lemma 4.24 to deduce that

|RewritingSet(α, β)| = |MeshSet(α, βm)| ≤ |Rn|e (p−1)! < |Rn|1+e p! . (4.38)

Now, let us consider the latter case. In order to maximise the resulting rewriting set
we assume that each production γ ∈ Ri generates a disjoint set of trees. We claim that
each production γ contributes at most |Rn|e p! new trees to the resulting rewriting set
and therefore |RewritingSet(α, β)| ≤ |Rn|1+e p!, as there are at most |Rn| productions
in Ri. Indeed, consider an arbitrary γ ∈ Ri. Evidently, if |RewritingSet(α, γ)| ≤ 1,
then our claim is true. Hence, let us assume that |RewritingSet(α, γ)| > 1. It follows
that γ is complex. Let us rewrite it as Xγ1 . . . γm. Note that as in the previous case, the
resulting rewriting set is of equal size as MeshSet(α, γm). Since π(α) + π(γm) ≤ p − 1
we use Lemma 4.24 and get

|RewritingSet(α, γ)| = |MeshSet(α, γm)| ≤ |Rn|e (p−1)! < |Rn|e p! . (4.39)

Lemma 4.26. Let α, β be two trees of total potential π(α)+π(β) equal to p. Then, each
mesh in MeshSet(α, β) has potential bounded by p!(1 + e).

Proof. Induction over total potential p. Again, it suffices to consider such α, β that
MeshSet(α, β) is not empty. Immediately, the base case p = 0 is clear. Let us assume
that p > 0. Consider the following primitive recursive function f : N→ N:

f(k) =

{
1 if k = 0 ,

k · (f(k − 1) + 1) otherwise.
(4.40)
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Let γ ∈ MeshSet(α, β). We claim that π(γ) ≤ f(p). Note that f is an increasing
function attaining positive values for any input. We have two cases to consider:

(i) Suppose that α = Xα1 . . . αm and β = Xβ1 . . . βm. Note that π(αi) + π(βi) ≤ p− 2
for each pair of corresponding arguments αi, βi. Using the induction hypothesis to
pairs αi, βi and the fact that γ ∈ MeshSet(α, β) is similar to both α and β, we
bound γ’s potential by

π(γ) ≤ m · f(p− 2) +m ≤ p · (f(p− 2) + 1) ≤ f(p) ; (4.41)

(ii) Assume w.l.o.g. that α = Ri and β is complex. It follows that γ ∈ MeshSet(δ, β)
for some δ ∈ Ri. If δ does not reference Ri, then clearly π(δ) ≤ π(Ri) − 1 and
therefore π(γ) ≤ f(p− 1).

Now, suppose that δ is a self-referencing production of Ri. If δ = XRi, then β is in
form of Xβ1 and similarly γ = Xγ1. It follows that π(δ) = π(Ri) + 1 and therefore
π(δ) + π(β) = p+ 1. Note however that π(γ1) ≤ f(p− 1) as π(Ri) + π(β1) ≤ p− 1.
Due to that, π(γ) = 1 + f(p− 1) ≤ f(p).

Let us assume w.l.o.g. that δ = SRiR0. Immediately, β is in form of Sβ1β2 whereas
γ = Sγ1γ2. Moreover, π(δ) = π(Ri)+3. Note however that both π(Ri)+π(β1) ≤ p−2
and π(R0) + π(β2) ≤ p − 2. We can therefore use the induction hypothesis and
conclude that

π(γ) = 2 + π(γ1) + π(γ2) ≤ 2 + 2 · f(p− 2) . (4.42)

Since π(δ) ≥ 4, we know that p ≥ 3 and so we can further bound π(γ) by

π(γ) = 2 (1 + f(p− 2))

≤ (p− 1) (1 + f(p− 2))

= f(p− 1) ≤ f(p) . (4.43)

Finally, we know that π(γ) ≤ f(p). What remains is to solve the recursion, using
e.g. Mathematica [Wol15], for f and give its closed-form solution. It follows that

f(p) = Γ(1 + p) + e pΓ(p, 1)

≤ p! + e p!

= p!(1 + e) (4.44)

where
Γ(n) = (n− 1)! (4.45)

Lemma 4.27. Let α, β be two trees of potential π(α) + π(β) = p. Then, each tree in
RewritingSet(α, β) has potential bounded by p!(1 + e) + p.

Proof. Let γ be an arbitrary tree in RewritingSet(α, β). Based on the structure of β
we have several cases to consider. If β = C, then γ = Cα and so π(γ) = π(α) + 1 = p+ 1.
Note that 1 < p!(1 + e) for any p and thus our bound holds.
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If β = Xβ1 . . . βm, then π(α) + π(βm) ≤ p − 1. In both cases when α BC βm the
resulting tree has potential bounded by p and so also by p!(1 + e) + p. Let us assume
that α ‖ βm. We can therefore rewrite γ as Xγ1 . . . γm. Using Lemma 4.26, we know that
π(γm) ≤ (p − 1)!(1 + e). Moreover, both α and β are similar to γ. Let us rewrite them
as Xα1 . . . αm and Xβ1, . . . , βm, respectively. Note that for each i < m, γi is equal to αi
or βi. It follows that we can bound the potential of Xγ1 . . . γm−1 by p− 1 and hence γ’s
potential by (p− 1)!(1 + e) + p.

Now, if β = Ri, then γ ∈ RewritingSet(α, δ) for some δ ∈ Ri. If δ does not
reference Ri, we know that π(δ) ≤ π(Ri)−1 ≤ p−1. Moreover, δ is complex, as otherwise
RewritingSet(α, δ) = ∅. Using our previous argumentation, we can therefore conclude
that π(γ) ≤ (p− 1)!(1 + e) + p. Suppose that δ is a self-referencing production of Ri. If
δ = XRi, then α is in form of Xα1 and γ = Xγ1. Immediately, π(α) + π(δ) = p + 1.
If Ri BC α1, then γ has potential bounded by p. Therefore, let us assume that Ri ‖ α1.
Since π(Ri) + π(α1) = p− 1, we know from Lemma 4.26 that π(γ1) ≤ (p− 1)!(1 + e). It
follows immediately that π(γ) ≤ (p− 1)!(1 + e) + 1 ≤ p!(1 + e) + p.

Finally, suppose that δ = Sδ1δ2 and so α = Sα1α2. Immediately, γ = Sγ1γ2. Again,
if δ2 BC α2, we can bound γ’s potential by p. Hence, let us assume that δ2 ‖ α2. Clearly,
π(α) + π(δ) = p+ 3. Note however that π(α1) + π(δ1) ≤ p− 2 and π(α2) + π(δ2) ≤ p− 2,
as both δ1 and δ2 are non-terminal reduction grammar symbols of positive potential.
Using Lemma 4.26 to MeshSet(α2, δ2) we conclude that π(γ2) ≤ (p − 2)!(1 + e). It
follows that π(γ) ≤ (p− 2)!(1 + e) + p ≤ p!(1 + e) + p.

Lemma 4.28 (Upper bound for π(Rn)). There exists a primitive recursive function ψ :
N→ N such that π(Rn) ≤ ψ(n).

Proof. Consider the following function ψ : N→ N:

ψ(k) =

{
1 if k = 0 ,

4 (ψ(k − 1) + 2)! + 2ψ(k − 1) + 5 otherwise.
(4.46)

Evidently, ψ is an increasing primitive recursive function. We show that ψ(n) bounds
the potential of Rn using induction over n. Since π(R0) = ψ(0) = 1, the base case is
clear. Let n > 0. In order to prove our claim, we have to check that π(α) ≤ ψ(n)− 1 for
all productions α ∈ Rn which do not reference Rn:

(i) Suppose that α = SRn−iRi. The potential of α is equal to 2 + π(Rn−i) + π(Ri).
Using the induction hypothesis, we know moreover that

π(α) ≤ 2 + ψ(n− i) + ψ(i)

≤ 2 + 2ψ(n− 1)

≤ ψ(n)− 1 ; (4.47)

(ii) Let α = KRn−1C. Due to the fact that π(α) = 2 + π(Rn−1), we use the induction
hypothesis and immediately obtain

π(α) ≤ 2 + ψ(n− 1) ≤ ψ(n)− 1 ; (4.48)
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(iii) Suppose that α ∈ K-Expansions(β) for some β ∈ Rn−1. Note that π(β) ≤ ψ(n −
1) + 3 as the productions of greatest potential in Rn−1 are exactly SRn−1R0 and
SR0Rn−1. Since π(α) = 2 + π(β), we get

π(α) ≤ 5 + ψ(n− 1) ≤ ψ(n)− 1 ; (4.49)

(iv) Finally, let α ∈ S-Expansions(β) for some β ∈ Rn−1. Again, π(β) ≤ π(Rn−1) + 3
and hence from the induction hypothesis π(β) ≤ ψ(n − 1) + 3. Let us rewrite α
as S(Xβ1 . . . βk)ϕlϕrβk+3 . . . βm where β = Xβ1 . . . βm. Note that π(α) ≤ π(β) +
π(ϕl) + π(ϕr) + 1. Moreover, as π(ϕlϕr) = 1 + π(ϕl) + π(ϕr), we get π(α) ≤
π(β)+π(ϕlϕr). Since π(βk+1βk+2) ≤ π(β)−1 and thus, π(βk+1βk+2) ≤ ψ(n−1)+2,
we can use Lemma 4.27 to obtain

π(ϕlϕr) ≤ (ψ(n− 1) + 2)!(1 + e) + ψ(n− 1) + 2 . (4.50)

It follows therefore that

π(α) ≤ π(β) + π(ϕlϕr)

≤ (ψ(n− 1) + 2)!(1 + e) + 2ψ(n− 1) + 5

≤ ψ(n)− 1 (4.51)

where the last inequality follows from the fact that

(3− e) (ψ(n− 1) + 2)! ≥ 1

5
(ψ(n− 1) + 2)! ≥ 6

5
> 0 . (4.52)

Theorem 4.29 (Upper bound for |Rn|). There exists a primitive recursive function χ :
N→ N such that the number |Rn| of productions in Rn is bounded by χ(n).

Proof. Consider Rn for some n > 0. Recall that Rn consists of:

(i) two productions SRn and KRn;

(ii) n+ 1 short S-productions in form of SRn−iRi;

(iii) an additional K-production KRn−1C;

(iv) K-Expansions(α) for each α ∈ Rn−1;

(v) S-Expansions(α) for each α ∈ Rn−1.

It suffices therefore to bound the number of K- and S-Expansions, as the number
of other productions in Rn is clear. Let us start with K-Expansions. Suppose that α
is of length m. Then, we have |K-Expansions(α)| = m. Using Proposition 4.22, we
know that that each production α ∈ Rn−1 is of length at most 2n. It follows that there
are at most 2n · |Rn−1| K-Expansions in Rn. Now, let us consider S-Expansions. In
order to bound the number of S-Expansions in Rn, we assume that each production
α ∈ Rn−1 is of length 2n and moreover each RewritingSet of appropriate portions of
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α generates a worst-case set of trees. And so, assuming that α is of length 2n we can
rewrite it as Xα1 . . . α2n. Let ψ denote the upper bound function on the potential of Rn−1

from Lemma 4.28. Evidently, π(α) ≤ ψ(n − 1) + 3. Now, using Lemma 4.25 we know
that each RewritingSet(αi, αi+1) contributes at most

|Rn−1|1+e
(
ψ(n−1)+3

)
! (4.53)

new S-Expansions. As there are at most 2n − 1 pairs of indices (i, i + 1) yielding
RewritingSets, we get that the number of S-Expansions in Rn is bounded by

(2n− 1) · |Rn−1| · |Rn−1|1+e
(
ψ(n−1)+3

)
! ≤ (2n− 1) · |Rn−1|2+3

(
ψ(n−1)+3

)
! . (4.54)

Finally, since |R0| = 5, we combine the above observations and get the following
primitive recursive upper bound on |Rn|.

χ(k) =


5 if k = 0 ,

4 + k + 2k · χ(k − 1)

+ (2k − 1) · χ(k − 1)2+3
(
ψ(k−1)+3

)
! otherwise.

(4.55)

We emphasise the fact that although the size of Rn is bounded by a primitive recursive
function of n, it seems to be enormously overestimated. Our computer implementation of
the Reduction Grammar algorithm [Ben16d] suggests that the initial numbers in the
sequence (|Rn|)n∈N are in fact:

5, 12, 75, 625, 5673, 53164, 508199, . . . .

The upper bound χ(1) on the size of R1 is already of order 6·1084549 whereas the actual
size of R1 is equal to 12. Naturally, we conjecture that (|Rn|)n∈N grows much slower than
(χ(n))n∈N, although the problem of giving better approximations on the size of Rn for
large n is still open.



Chapter 5

Quantitative aspects of combinatory logic

In the current chapter we investigate the quantitative properties of combinatory logic.
We start with several basis-independent results. Subsequently, we focus on the classic set
of SK-combinators studying the quantitative aspects of normalising combinators.

5.1 Basis independent results

We start with certain general results about classes of plane trees with labelled leaves, de-
riving the universal, basis-independent combinatory logic results as immediate corollaries.

Definition 5.1 (L-trees). Suppose that L is a finite set of d distinct labels. Then, the
set of L-trees consists of plane binary trees where each leave has a corresponding label in
the set L. We use TL to denote the set of L-trees.

Let us notice that the asymptotic growth rate of L-trees with n inner nodes directly
depends on the asymptotic approximation of the Catalan numbers Catn counting the
number of plane binary trees with n inner nodes (see, e.g. [FS09]). It is well known that

Catn =
1

n+ 1

(
2n

n

)
and Catn ∼

4n√
πn3/2

. (5.1)

Certainly, since each plane binary tree with n inner nodes has exactly n + 1 leaves,
the number TL,n of L-terms of size n is given as

TL,n = dn+1 · Catn =
dn+1

n+ 1

(
2n

n

)
. (5.2)

Suppose that t ∈ TL. Let TL(z) denote the generating function associated with the
class of L-trees containing t as a subtree. In the following series of propositions, we
derive the closed-form solution for TL(z) and check the conditions of the algebraic singu-
larity analysis used subsequently to show that in fact both [zn]TL(z) and [zn]TL(z) are
asymptotically equivalent, independently of L.

Proposition 5.2. Let TL be the set of L-trees where |L| = d. Then, its counting sequence
(TL,n)n∈N has a corresponding generating function TL(z) given by

TL(z) =
1−
√

1− 4dz

2z
. (5.3)

Proof. Note that TL can be defined as TL = L + TL
2, which by virtue of the symbolic

method translates into the following functional equation defining TL(z):

TL(z) = d+ zTL(z)2 (5.4)

66
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with the following two possible solutions:

TL(z) =
1±
√

1− 4dz

2z
. (5.5)

An easy application of Riemann’s removable singularities theorem (see Theorem 2.18)
yields that (5.3) is the only solution analytically continuable at the origin, finishing the
proof.

Proposition 5.3. Let L be a set of d distinct labels. Assume that t ∈ TL is an L-tree
of size p ≥ 1. Then the set of L-trees containing t as a subtree, denoted as TL, has the
following generating function:

TL(z) =
−
√

1− 4dz +
√

1− 4dz + 4zp+1

2z
. (5.6)

Proof. Let us start with noticing that any L-tree containing t as a subtree is either equal
to t, or one of its left or right subtrees contains t whereas the other one is a tree in
TL. However, since trees in TL may contain t as a subtree, we have to subtract trees
containing t in both branches to avoid double counting. Such a specification yields the
following functional equation defining TL(z):

TL(z) = zp + 2zTL(z)TL(z)− zTL(z)
2
. (5.7)

Solving (5.7) for TL(z) we obtain two possible solutions:

−
√

1− 4dz ±
√

1− 4dz + 4zp+1

2z
. (5.8)

Since p ≥ 1, there are no L-trees of size 0 containing t as a subterm. In consequence
limz→0 TL(z) = 0 and so we obtain the claimed solution.

Proposition 5.4. Let ρ = 1/4d. Then, ρ is the only singularity on both the circles of
convergence of TL(z) and TL(z).

Proof. From (5.3) it is clear that ρ is the only singularity of TL(z) on the circle |z| = ρ.
Now, let us focus on TL(z). Due to the fact that TL(z) � TL(z), the exponential growth
formula guarantees that TL(z) has no singularities in the disk |z| < ρ. Moreover, since√

1− 4dz is a part of the closed-form expression (5.6) of TL(z), it suffices to check that
F (z) = 1− 4dz + 4zp+1 has no complex roots of modulus ρ. Let us rewrite (5.6) as

TL(z) =
1−
√

1− 4dz −
(
1−
√

1− 4dz + 4zp+1
)

2z

= TL(z)− 1−
√

1− 4dz + 4zp+1

2z
. (5.9)

Both TL(z) and TL(z) are generating functions corresponding to sequences of non-negative
integers; hence the coefficients in the Maclaurin series of the latter expression are non-
negative integers as well. To finish the proof, we note that

F (ρ) = 4−p
(

1

d

)p+1

> 0 (5.10)

and so due to Pringsheim’s theorem, F (z) cannot have complex roots of modulus ρ.
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Proposition 5.5. Both [zn]TL(z) and [zn]TL(z) asymptotically equivalent. Specifically:

[zn]TL(z) ∼ [zn]TL(z) ∼ 4ndn+1

√
πn3/2

. (5.11)

Proof. By (5.3) and (5.6) we can rewrite the closed-form solutions of TL(z) and TL(z) as

TL(z) =
√

1− 4dz

(
− 1

2z

)
+

1

2z
and (5.12)

TL(z) =
√

1− 4dz

(
− 1

2z

)
+

√
1− 4dz + 4zp+1

2z
. (5.13)

Due to Proposition 5.4 both have a unique dominating singularity hence are amenable to
the algebraic singularity analysis.

Consequently, we are in the position to prove that L-trees admit the fixed subterm
property, i.e. asymptotically almost all L-trees contain an arbitrary fixed L-tree as a
subtree.

Proposition 5.6 (Fixed subterm property). Let t ∈ TL. Then asymptotically almost all
L-trees contain t as a subtree.

Proof. In the case when |t| ≥ 1 our claim follows directly from the asymptotic approxim-
ation of TL(z). Now, suppose that |t| = 0 (i.e. t is a single leave). We can safely assume
that |L| > 1 as otherwise our claim is trivial. Note that [zn]TL\{t}(z) = Θ(4n(d− 1)n+1)
whereas [zn]TL(z) = Θ(4ndn+1); hence, the set of L-trees avoiding t is asymptotically
negligible in the set of all L-trees, which finishes the proof.

Furthermore, as in the case of λ-calculus, we obtain the following corollary.

Corollary 5.7. Let A be a non-empty set of L-trees closed under taking supertrees. In
other words, if N ∈ A and N is a subtree of M , then M ∈ A. Then, asymptotically
almost all L-trees are in the set A.

The above general observation asserts that ‘local’ properties of L-trees propagating
to supertrees span asymptotically almost the whole set of L-trees. In light of the nat-
ural correspondence between B-combinators and B-trees, we can state that each ‘local’
property of B-combinators closed under taking superterms is typical, i.e. has asymptotic
probability one in the set of all B-combinators. In particular, we obtain the following
result.

Corollary 5.8. For each universal basis B, asymptotically almost every B-combinator
is neither in normal form nor strongly normalising. Moreover, for each sound universal
basis B (see Definition 2.58), asymptotically almost no B-combinator is typeable.

Theorem 5.9. Let B be a universal basis of primitive combinators. Then

0 < µ−
(
WN B
CB

)
and µ+

(
WN B
CB

)
< 1 . (5.14)
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Proof. Let S and K be two B-combinators implementing S and K, respectively.
We start with the lower limit. Let us consider the set G of combinators in form of

KXM where X is a primitive combinator and M ∈ CB. Certainly, G consists entirely of
normalising combinators; hence G ⊆ WN B. Let us fix p := |K|. Then

µ

(
G
CB

)
= lim

n→∞

|Gn|
|CB,n|

= lim
n→∞

d · |CB,n−p−2|
|CB,n|

(5.15)

= lim
n→∞

dn−p · Catn−p−2

dn+1 · Catn
=

1

dp+1 · 4p+2
> 0 . (5.16)

And so
µ

(
G
CB

)
≤ µ−

(
WN B
CB

)
(5.17)

hence the lower bound indeed holds.
Now, let us focus on the upper limit. Let ω = SII. Note that SIIx →+

w xx and
so SII(SII) has no normal form. In consequence, nor does Ω = ωω. Consider the
map Φ: B → B which for a given B-combinator substitutes Ω for its leftmost primitive
combinator X. Let U be the image of CB through Φ. Since Ω has no normal form, by
virtue of the standardisation theorem U consists entirely of non-normalising combinators.
In other words, we have WN B ⊆ CB \ U . Let M be an arbitrary combinator in U . Note
that since there are d primitive combinators in B, the map Φ sends exactly d distinct
combinators to M . Fix p := |Ω|. Then

µ

(
U
CB

)
= lim

n→∞

|Un|
|CB,n|

= lim
n→∞

d · |CB,n−p|
|CB,n|

(5.18)

= lim
n→∞

dn−p+2 · Catn−p
dn+1 · Catn

=
d

(4d)p
> 0 . (5.19)

Since WN B ⊆ CB \ U , we finally get

µ+

(
WN B
CB

)
≤ 1− µ

(
U
CB

)
(5.20)

and so the upper bound holds as well.

Using the fact that asymptotically no B-combinator is strongly normalising (see Co-
rollary 5.8), we obtain the following result.

Corollary 5.10. For each universal basis B of primitive combinators, asymptotically al-
most every weakly normalising B-combinator is at the same time not strongly normalising.

5.2 Normalising SK-combinators

In this section we address the problem of estimating the asymptotic density of normalising
SK-combinators in the set of all combinators. Specifically, we prove that for each positive
integer n, the set of all SK-combinators reducing in n normal-order reduction steps has
positive asymptotic density in the set of all SK-combinators.

Let us start with a few technical lemmas and propositions regarding the previously
introduced generating functions C(z) and R0(z) (see Proposition 4.20).



70 CHAPTER 5. QUANTITATIVE ASPECTS OF COMBINATORY LOGIC

Lemma 5.11. Let n ≥ 1. Then, C(z)n =
√

1− 8z P (z)+Q(z) for some rational functions
P (z) and Q(z) analytic in C \ {0}. Moreover, C(z)n has a single removable singularity at
z = 0 in the disk |z| < ρC .

Proof. From equation (4.17), C(z) can be rewritten as

C(z) =
√

1− 8z P (z) +Q(z) where P (z) = − 1

2z
and Q(z) =

1

2z
. (5.21)

Both P (z) and Q(z) are rational and hence also analytic in the complex plane except the
origin. From Lemma 2.20, C(z)n can be expressed as

C(z)n =
√

1− 8z P (z) +Q(z) (5.22)

for some P (z) and Q(z) analytic in C\{0}. Furthermore, following (2.19) and the closure
properties of rational functions, it is clear that P (z) and Q(z) are also rational. Riemann’s
removable singularities theorem (see Theorem 2.18) guarantees that C(z) has an analytic
continuation including z = 0 and, by virtue of Lemma 2.19, so does C(z)n, finishing the
proof.

Lemma 5.12. Let n ≥ 1. Then R0(z)n =
√

1− 4z − 4z2 P (z) + Q(z) for some rational
functions P (z) and Q(z) analytic in C \ {0}. Moreover, R0(z)n has a single removable
singularity at z = 0 in the disk |z| < ρ0.

Proof. From the shape of equation (4.18) we have

R0(z) =
√

1− 4z − 4z2 P (z) +Q(z) (5.23)

where
P (z) = − 1

2z2
and Q(z) =

1− 2z

2z2
. (5.24)

Certainly, both P (z) and Q(z) are rational and analytic in C \ {0}. The proof follows
now easily from the same arguments as in Lemma 5.11.

Through the remainder of this section, we exploit the structure of the normal-order
reduction grammars (see Chapter 4), showing the following main result.

Theorem 5.13. Let k ≥ 1. Then the asymptotic growth rate of [zn]Rk(z) is given by

[zn]Rk(z) ∼ 8n
Ckn

−3/2

Γ(−1
2
)

(5.25)

where Ck is a constant depending entirely on k.

Recall that due to Theorem 4.21, the generating function Rn(z) exhibits the following
implicit form:

Rn(z) =
1√

1− 4z − 4z2

∑
α∈Φ(Rn)

Rα(z) (5.26)

where

Rα(z) = zk(α)C(z)c(α)
n−1∏
i=0

Ri(z)ri(α) . (5.27)

Let us start with some technical lemmas and propositions regarding the generating
functions corresponding to normal-order reduction grammars.
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Lemma 5.14. Let n ≥ 0. Then, each Rn(z) has a removable singularity at z = 0.

Proof. Induction over n. Following Riemann’s removable singularities theorem (see The-
orem 2.18), Rn(z) has a removable singularity at z = 0 if and only if the limit limz→0 zRn(z)
exists and is equal to 0. In particular, from (5.26) and (5.27)

lim
z→0

z√
1− 4z − 4z2

(
zk(α)C(z)c(α)

n−1∏
i=0

Ri(z)ri(α)

)
= 0 (5.28)

for each α ∈ Φ(Rn).
Let us start with n = 0. In this case, the product

∏n−1
i=0 Ri(z)ri(α) vanishes, simplify-

ing (5.28) to

lim
z→0

zk(α)+1C(z)c(α)

√
1− 4z − 4z2

= 0 . (5.29)

Due to Lemma 5.11, C(z)c(α) has an analytic continuation including z = 0. In con-
sequence, limz→0C(z)c(α) exists, indeed satisfying equation (5.29).

Now, suppose that n > 0. By the induction hypothesis all R0(z), . . . , Rn−1(z) have
removable singularities at z = 0. Using Lemma 2.19, we can moreover state that so do
their powers R0(z)r0(α), . . . , Rn−1(z)rn−1(α). Together with our previous observation that
C(z)c(α) has an analytic continuation including the origin, we conclude that (5.28) is
satisfied, finishing the proof.

Definition 5.15 (Major and minor productions). Let α ∈ Φ(Rn) for some n ≥ 1. The
production α is said to be major if α references either CSK or some Ri for i ∈ {1, . . . , n−1}.
Otherwise, α is said to be minor.

In the following lemma we use the notions of major and minor productions, show-
ing that major productions contribute to the asymptotic growth rate of the underlying
counting sequence of Rn(z) whereas minor ones are asymptotically negligible.

Lemma 5.16. Let n ≥ 1. Then each Rn(z) is in form of
√

1− 8z P (z) + Q(z) where
both P (z) and Q(z) are analytic in the disk |z| < ρ0 excluding the origin.

Proof. Induction over n. Consider the base case n = 1. Let us divide Φ(R1) into two
groups, i.e. major and minor productions. Suppose that α ∈ R1 is a major production.
Since α ∈ Φ(R1), its corresponding generating function Rα(z) is in form of

Rα(z) = zk(α)C(z)c(α)R0(z)r0(α) (5.30)

where in addition c(α) ≥ 1. Utilising Lemmas 5.11 and 5.12, we can further rewrite the
formula (5.30) as

Rα(z) =
√

1− 8z P (z) +Q(z) (5.31)

for functions P (z) and Q(z) analytic in the disk |z| < ρ0 excluding the origin. Similarly,
if α ∈ Φ(R1) is minor, we can rewrite its generating function as

Rα(z) =
√

1− 4z − 4z2 P̂ (z) + Q̂(z) (5.32)
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where P̂ (z) and Q̂(z) are analytic in some disk |z| < ρ0 + ε for ε > 0 excluding the origin.
The requested form of R1(z) follows now from Lemma 2.20 and the fact that ρ1 < ρ0.

Now, suppose that n > 1. Again, let us consider an arbitrary major production
α ∈ Φ(Rn). By the induction hypothesis and (5.27), we can rewrite Rα(z) as

Rα(z) = zk(α)C(z)c(α)R0(z)r0(α)
n−1∏
i=1

(√
1− 8z Pi(z) +Qi(z)

)ri(α)

. (5.33)

Applying Lemmas 5.11 and 5.12, we can further rewrite (5.33) as

Rα(z) =

(√
1− 8z P (z) +Q(z)

) n−1∏
i=1

(√
1− 8z Pi(z) +Qi(z)

)ri(α)

. (5.34)

The result follows now easily from Lemma 2.20.

Finally, we are in the position to prove Theorem 5.13.

Proof. (Theorem 5.13) Let k > 0. Due to Lemma 5.16, every function Rk(z) is in form
of
√

1− 8zPk(z) + Qk(z) for some algebraic functions Pk(z) and Qk(z) that are analytic
in the disk |z| <

√
2−1
2

excluding the origin. Moreover, by Lemma 5.14, every Rk(z) has
a removable singularity at the origin. Therefore, all functions Rk(z) are amenable to
the algebraic singularity analysis and admit the following asymptotic approximation:

[zn]Rk(z) ∼ 8n
Ckn

−3/2

Γ(−1
2
)

(5.35)

where Ck is a constant depending entirely on k.

Since ρm = 1/8 for every m ≥ 1, we can easily compute the coefficients Cm in the
asymptotic approximation of [zn]Rm(z) utilising available computer algebra systems, e.g.
Mathematica [Wol15]. Note that the quotient −Cm/4 (5.11) yields the desired asymptotic
density of SK-combinators normalising in m normal-order reduction steps in the set of
all combinators. In consequence, we obtain the following corollary.

Corollary 5.17. For each natural integer m, the asymptotic density of combinators
normalising in m steps in the set of all SK-combinators is computable.

Combining our normal-order reduction grammar algorithm implementation with Math-
ematica we were able to compute the densities of combinators reducing in m normal-order
reduction steps Rm in CSK form = 1, . . . , 7. For convenience, let us denote µm = µ

(
Rm
CSK

)
.

The results are summarised in Figure 5.1.
Exploiting the finite additivity of asymptotic density we obtain the following lower

bound for normalising SK-combinators:

0.3401040259 ≤ µ−
(
WN SK

CSK

)
. (5.36)

Clearly, the above lower bound can be further improved if we compute the next asymp-
totic densities for m ≥ 8. Alas, due to the sheer amount of major productions this process
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m µm
1 0.0896123329
2 0.0641737440
3 0.0501056553
4 0.0413196741
5 0.0357099692
6 0.0311952570
7 0.0279873932

Figure 5.1: Density of Rm in CSK for m = 1, . . . , 7

is immensely time and memory consuming, quickly requiring resources exceeding available
desktop computer capabilities.

Nevertheless, µm > 0 for each m. Necessarily,
∑

m≥0 µm ≤ 1 is convergent to some

value 0 < ζ < 1. Moreover, if µ
(
WNSK
CSK

)
exists, then we have ζ ≤ µ

(
WNSK
CSK

)
. Alas, the

intriguing problem of determining whether the inequality can be replaced by an equality
remains open.

5.3 Experimental results

Our method developed in Section 5.2 allows us to improve the lower bound (5.36) provided
we have enough computational resources to find and manipulate generating functions
Rm(z). Unfortunately, the current gap between the lower and upper bound on the density
of normalising combinators is still quite significant. In this section we present some
experimental results regarding the aforementioned density as well as numerical evaluations
of the obtained approximation error.

5.3.1 Super-computer results

Let us consider an experiment scheme G(s, n, r) parametrised with three positive integer
parameters s, n, r. We start with drawing s uniformly random SK-combinators of size n,
using an exact-size sampler based on Rémy’s algorithm [Rém85; Knu06]. Next, we reduce
each of the s samples using up to r normal-order reduction steps. We record then the
number of normalised samples, with their corresponding reduction lengths. Samples not
normalising in r reduction steps are recorded with an artificially reduction length of −1.
Finally, we collect the reduction lengths plotting the obtained function mapping reduction
lengths to the number of samples attaining the specific reduction length.

Our experiments were performed on the Prometheus super-computer cluster granted
by ACC Cyfronet AGH in Kraków, Poland 1. Figure 5.2 summarises the experiment result
for G(s = 1200, n = 50, 000, 000, r = 1000).

1http://www.cyfronet.krakow.pl/, Accessed: 15.03.2017

http://www.cyfronet.krakow.pl/
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Figure 5.2: G(s = 1200, n = 50, 000, 000, r = 1000)

Even though the number r = 1000 bounding the number of reductions is significantly
smaller than the size of considered samples, the experiment revealed that normalising
combinators have short reduction lengths. In fact, the mean reduction length over all
normalising samples is approximately equal to 31.5810 whereas log2 n ≈ 25.5754. Out of
1200 samples, only 176 did not normalise in 1000 steps, yielding approximately 14.6% of
all considered samples. Similar results were obtained with different parameters, suggesting
that the ratio of normalising SK-combinators is approximately equal to 85% whereas the
mean reduction length of normalising terms is Θ(log2 n). Our Haskell implementation of
the program, as well as all the obtained data sets are available at [Ben16e].

5.3.2 Approximation error

In Section 5.2 we proved that for positive m, the set of combinators reducing in m normal-
order reduction steps has positive asymptotic density in the set of all combinators. How-
ever, techniques used to obtain this result do not provide direct access to the convergence
rate of sequences in question. Using Mathematica we compared [zn]Rm(z) with its approx-
imation 8nC̃mn

−3/2. Figures 5.3 and 5.4 summarise values for [zn]R1(z) and their relative
error δ([zn]R1(z)).

Since [zn]R1(z) ∼ 8nC̃1n
−3/2 the relative error δ([zn]R1(z)) is inevitably tending to 0 as

n→∞. Remarkably, the error δ([zn]R1(z)) converges much more slowly than expected.
With n = 300 the error is just of order 10−2. We observed similar results in the relative
errors for higher n, where the convergence rate is even slower than in the case of [zn]R1(z).

Our Mathematica scripts and an implementation of the algorithm computing Rm(z)
are available at [Ben16d].
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n [zn]C(z) [zn]R1(z) b8nC̃1n
−3/2c δ([zn]R1(z))

2 16 4 2 0.50000
3 80 32 9 0.71875
4 448 200 51 0.74500
5 2688 1152 296 0.74305
6 16896 6528 1803 0.72380
7 109824 37184 11450 0.69207
8 732160 215328 74973 0.65181
9 4978688 1275520 502653 0.60592

10 34398208 7753472 3433386 0.55718
11 240787456 48412416 23808041 0.50822
12 1704034304 310294272 167159405 0.46128
13 12171673600 2037696512 1185980764 0.41797
14 87636049920 13675532288 8489666053 0.37920
15 635361361920 93532264448 61240081391 0.34525
16 4634400522240 650108973568 444715903783 0.31593
17 33985603829760 4580578080768 3248472837654 0.29081
18 250420238745600 32644683026432 23852497067944 0.26932
19 1853109766717440 234890688573440 175955235773882 0.25090
20 13765958267043840 1703833526784000 1303399617705108 0.23501

Figure 5.3: [zn]R1(z) ∼ 8nC̃1n
−3/2 with C̃1 ≈ 0.10111668957132425.
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Relative error δ([zn]R1(z)) for 2 ≤ n ≤ 20

δ([zn]R1(z))

n δ([zn]R1(z))
20 0.23501
40 0.10914
60 0.07194
80 0.05369

100 0.04284
120 0.03564
140 0.03051
160 0.02667
180 0.02369
200 0.02131
220 0.01936
240 0.01774
260 0.01637
280 0.01520
300 0.01418

Figure 5.4: Relative error δ([zn]R1(z)).



Chapter 6

Conclusions and open problems

We presented a quantitative analysis of λ-calculus in the de Bruijn notation and com-
binatory logic under various combinator bases, marking crucial similarities between both
computational models. Notably, with respect to quantitative properties of normalisation,
λ-calculus in the representation using de Bruijn indices stands in sharp contrast to the
canonical representation of David et al. [Dav+13]. In the latter representation, variables
do not contribute to the term size; hence, random λ-terms tend to avoid any fixed closed
λ-term as a subterm. On the other hand, in the former representation, the average dis-
tance between a variable and its binding abstraction is constant which, arguably, leads to
the precisely opposite result – a random λ-term contains any fixed λ-term as a subterm.

Such a striking disparity, where different computational models yield opposite, some-
times counterintuitive quantitative results with respect to undecidable properties is not
entirely unexpected. Let us notice that similar questions regarding the existence of the
asymptotic density of terminating computations were considered in the context of Turing
machines (see e.g. [BDS15; BDS16; HM06]). Remarkably, depending on the assumed
machine model the density of terminating Turing machine computations may or may not
exist. Hamkins and Miasnikov consider the model with a single semi-infinite tape show-
ing that asymptotically almost all Turing machines terminate their computations, quite
rapidly falling of the tape [HM06]. On the other hand, Bienvenu et al. consider a general
framework of algorithmic information theory optimal machines, showing that the frac-
tion sequence of terminating computations cannot have a limit [BDS16]. With Tromp’s
introduction of Kolmogorov complexity to λ-calculus and combinatory logic [Tro06] it is
quite natural to ask whether similar discrepancies hold in the universes of λ-calculus or
combinatory logic.

Presented results regarding the asymptotic density of normalising combinatory logic
terms provide a tentative answer to the general asymptotic density problem of terminating
computations in combinatory logic. With our effective characterisation of normalising
combinators, it became possible to utilise techniques of analytic combinatorics and give
an algorithmic scheme of systematically improving the lower bound of the corresponding
lower asymptotic density. Alas, our method requires extensive amounts of resources, both
in terms of time and memory. Based on the initial numbers in the counting sequence
corresponding to normal-order reduction grammar productions, the presented primitive
recursive upper bound seems to be a vast overestimation. Nonetheless, the intriguing
problem of finding better asymptotic approximations is left open.

Problem 6.1. Establish the asymptotic growth rate of the counting sequence corres-
ponding to normal-order reduction grammar productions.

76
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With available computing resources, we found that combinators normalising in up to
seven normal-order reduction steps form a set of asymptotic density over 34% whereas
super-computer experiments suggest that the actual asymptotic density of normalising
combinators is close to 85%. The sheer amount of asymptotically significant fractions of
normalising combinators reveals the intrinsic difficulty of establishing the existence (less
alone the precise quantity) of the asymptotic density of normalising combinators.

Problem 6.2. Determine whether the set of normalising combinators has an asymptotic
density in the set of all combinators. If so, determine its quantity.

In the case of λ-calculus, the problem of determining the asymptotic density of nor-
malising λ-terms seems to be even more difficult. Here, the arguably main obstacle is
the context-sensitive nature of the substitution operation, unlike the ‘local’ contraction in
combinatory logic. In consequence, the corresponding reduction grammars for λ-calculus
ought be, at least to some degree, context-sensitive as well. Alternatively, it is possible to
investigate the same problem for some variant of λ-calculus with so-called explicit substi-
tution, including substitution as a first-class citizen in the language (see e.g. [Les94]).

Problem 6.3. Determine whether the set of normalising λ-terms has an asymptotic
density in the set of all λ-terms. If so, determine its quantity.

Incorporating substitution into the language of λ-calculus raises hopes for an effective
combinatorial characterisation of normalising λ-terms in some variant with explicit sub-
stitution. Various λ-calculi with explicit substitution model it in diverse ways, yielding
contrasting properties in terms of confluence on open terms or strong normalisation. In
consequence different, quite natural problems arise, including the following.

Problem 6.4. Investigate the quantitative properties of λ-calculi with explicit substi-
tution. Which substitution primitives contribute the most to the execution cost in the
typical case?

Concerning more outright practical aspects of quantitative nature in λ-calculus and
combinatory logic, the perhaps most interesting open problem is the effective uniform
generation of large terms with predetermined properties, such as typeability or (strong)
normalisation. Utilising techniques of Boltzmann sampling, particularly numerical or-
acles [PSS12], the problem of approximate-size generation of finitely specifiable systems
of interesting terms is virtually closed (see e.g. [CD09; Dar+12; Xia16; Ben16a]). In
some cases, e.g. neutral terms in the natural size notion, effective exact-size sampling is
available due to effective bijections with known combinatorial structures. In particular,
due to the neat binary tree sampling algorithm of Rémy [Rém85] it is possible to sample
combinators of given size in arbitrary combinator bases. Finally, let us notice that for a
broad variety of so-called admissible classes of terms, the less effective recursive method
of Nijenhuis and Wilf involving large integer arithmetic is also available [NW78].

Alas, the arguably most interesting classes of λ-terms, including closed, typeable or
normalising ones, are not known to be finitely specifiable in terms of admissible construc-
tions; hence, do not fall directly under the methodological scope of Boltzmann samplers.
Presented sampling methods for closed h-shallow λ-terms provide a partial framework
meant to approximate the infinite system of closed λ-terms and, as such, are able to
generate large λ-terms in a restricted class of closed ones. We note also that rejection
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methods for the full class of closed λ-terms are available due to the results of Gittenberger
and Gołębiewski [GG16].

In the case of closed typeable λ-terms, no finite specification approximating an inter-
esting non-trivial fragment of all typeable terms is known. We resort therefore to rejection
sampling combined with logical programming techniques. Although the resulting sampler
improves over previous approaches, the achievable term sizes of around 140 in the case of
the natural size notion are still somewhat unsatisfactory.

Problem 6.5. Develop an efficient method of exact- or approximate-size generation of
large λ-terms in an interesting, non-trivial fragment of closed typeable λ-terms. In par-
ticular, the whole set of closed typeable ones.

Let us remark that a natural candidate class of non-trivial typeable λ-terms is the
class of so-called affine λ-terms, i.e. λ-terms in which each abstraction binds at most one
variable (see e.g. [Hin96]).

With respect to normalisation, presented results regarding the effective construction
of normal-order reduction grammars as well as their corresponding generating functions
provide a novel approach to the generation of large normalisable combinators. Using
Boltzmann sampler techniques, it becomes possible to construct random combinators
reducing in any fixed number of normal-order reductions. Unfortunately, due to the
quickly intractable size of reduction grammars, such tools are able to operate on just
the few initial grammars. Nonetheless, under the standard translation to λ-calculus,
combinators reducing under a few normal-order reduction steps constitute a novel, non-
trivial source of large random normalising λ-terms.

With the growing popularity of property-based testing techniques involving, for in-
stance, large random λ-terms, it becomes necessary to understand the statistical prop-
erties of large uniformly random structures. Presented results regarding the average
de Bruijn index weight in a large random λ-term are one of various intriguing statist-
ics worth exploring. In the case of plain λ-terms, our result was obtained utilising the
moment techniques of analytic combinatorics; however, for most interesting classes, such
as closed λ-terms, the application of moment techniques to infinite combinatorial systems
becomes a challenging endeavour.

Problem 6.6. Investigate the distribution of various intriguing combinatorial parameters
for plain and closed λ-terms. For instance, the average number of unbound indices in a
random open λ-term or the average number of binding abstractions in a random closed
λ-term.
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